高一数学必修四第一章三角函数综合检测题(北师大版有答案)
详细内容
综合检测(一)
第一章 三角函数
(时间120分钟,满分150分)
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函数f(x)=3sin(x2-π4),x∈R的最小正周期为( )
A.π2 B.π
C.2πD.4π
【解析】 T=2πω=2π12=4π.
【答案】 D
2.化简sin(9π-α)+cos(-9π2-α)=( )
A.2sin αB.2cos α
C.sin α+cos αD.0
【解析】 sin(9π-α)+cos(-9π2-α)=sin(π-α)+cos(π2+α)=sin α-sin α=0.
【答案】 D
3.函数f(x)=tan ωx(ω>0)图像的相邻的两支截直线y=π4所得线段长为π4,则f(π4)的值是( )
A.0B.1
C.-1 D.π4
【解析】 由题意知截得线段长为一周期,∴T=π4,
∴ω=ππ4=4,
∴f(π4)=tan (4×π4)=0.
【答案】 A
4.已知角α的终边上一点的坐标为(sin 2π3,cos 2π3),则角α的最小正值为
( )
A.5π6 B.2π3
C.5π3 D.11π6
【解析】 ∵sin 2π3>0,cos 2π3<0,
∴点(sin 2π3,cos 2π3)在第四象限.
又∵tan α=cos 2π3sin 2π3=-33,
∴α的最小正值为2π-16π=116π.
【答案】 D
5.要得到函数y=sin(4x-π3)的图像,只需把函数y=sin 4x的图像( )
A.向左平移π3个单位长度
B.向右平移π3个单位长度
C.向左平移π12个单位长度
D.向右平移π12个单位长度
【解析】 由于y=sin(4x-π3)=sin[4(x-π12)],所以只需把y=sin 4x的图像向右平移π12个单位长度,故选D.
【答案】 D
6.设函数f(x)=sin(2x+π3),则下列结论正确的是( )
A.f(x)的图像关于直线x=π3对称
B.f(x)的图像关于点(π4,0)对称
C.把f(x)的图像向左平移π12个单位长度,得到一个偶函数的图像
D.f(x)的最小正周期为π,且在[0,π6]上为增函数
【解析】 f(π3)=sin(2×π3+π3)=sin π=0,故A错;
f(π4)=sin(2×π4+π3)=sin(π2+π3)=cos π3=12≠0,故B错;把f(x)的图像向左平移π12个单位长度,得到y=cos 2x的图像,故C正确.
【答案】 C
7.(2012•福建高考)函数f(x)=sin(x-π4)的图像的一条对称轴是( )
A.x=π4B.x=π2
C.x=-π4D.x=-π2
【解析】 法一 ∵正弦函数图像的对称轴过图像的最高点或最低点,
故令x-π4=kπ+π2,k∈Z,∴x=kπ+3π4,k∈Z.
取k=-1,则x=-π4.
法二 x=π4时,y=sin(π4-π4)=0,不合题意,排除A;x=π2时,y=sin(π2-π4)=22,不合题意,排除B;x=-π4时,y=sin(-π4-π4)=-1,符合题意,C项正确;而x=-π2时,y=sin(-π2-π4)=-22,不合题意,故D项也不正确.
【答案】 C
8.(2013•西安高一检测)下列函数中,以π为周期且在区间(0,π2)上为增函数的函数是( )
A.y=sinx2B.y=sin x
C.y=-tan xD.y=-cos 2x
【解析】 C、D中周期为π,A、B不满足T=π.
又y=-tan x在(0,π2)为减函数,C错.
y=-cos 2x在(0,π2)为增函数.
∴y=-cos 2x满足条件.
【答案】 D
9.已知函数y=sin πx3在区间[0,t]上至少取得2次最大值,则正整数t的最小值为( )
A.6B.7
C.8D.9
【解析】 T=6,则5T4≤t,如图:
∴t≥152,∴tmin=8.
故选C.
【答案】 C
10.(2012•天津高考)将函数f(x)=sin ωx(其中ω>0)的图像向右平移π4个单位长度,所得图像经过点(3π4,0),则ω的最小值是( )
A.13 B.1
C.53 D.2
【解析】 根据题意平移后函数的解析式为y=sin ω(x-π4),将(3π4,0)代入得sin ωπ2=0,则ω=2k,k∈Z,且ω>0,故ω的最小值为2.
【答案】 D
二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上)
11.已知圆的半径是6 cm,则15°的圆心角与圆弧围成的扇形的面积是________cm2.
【解析】 15°=π12,∴扇形的面积为S=12r2•α=12×62×π12=3π2.
【答案】 3π2
12.sin(-120°)cos 1 290°+cos(-1 020°)sin(-1 050°)=________.
【解析】 原式=-sin(180°-60°)•cos(3•360°+210°)+cos(-1 080°+60°)•sin(-3×360°+30°)
=-sin 60°cos(180°+30°)+cos 60°•sin 30°
=-32×(-32)+12×12=1.
【答案】 1
13.(2013•江苏高考)函数y=3sin(2x+π4)的最小正周期为________.
【解析】 函数y=3sin(2x+π4)的最小正周期T=2π2=π.
【答案】 π
图1
14.已知函数f(x)=sin(ωx+φ)(ω>0)的图像如图所示,则ω=________.
【解析】 由图像可知,
T=4×(2π3-π3)=4π3,
∴ω=2πT=32.
【答案】 32
15.关于x的函数f(x)=sin(x+φ)有以下命题:
①对于任意的φ,f(x)都是非奇非偶函数;②不存在φ,使f(x)既是奇函数又是偶函数;③存在φ,使f(x)是奇函数;④对任意的φ,f(x)都不是偶函数.
其中假命题的序号是________.
【解析】 当φ=2kπ,k∈Z时,f(x)=sin x是奇函数;
当φ=(2k+1)π,k∈Z时,f(x)=-sin x仍是奇函数;
当φ=2kπ+π2,k∈Z时,f(x)=cos x或φ=2kπ-π2,k∈Z时,f(x)=-cos x都是偶函数.
所以①和④是错误的,③是正确的.
又因为φ无论取何值都不能使f(x)恒为零,故②正确.所以填①④.
【答案】 ①④
三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分12分)已知角x的终边过点P(1,3).
(1)求:sin(π-x)-sin(π2+x)的值;
(2)写出角x的集合S.
【解】 ∵x的终边过点P(1,3),
∴r=|OP|=12+32=2.
∴sin x=32,cos x=12.
(1)原式=sin x-cos x=3-12.
(2)由sin x=32,cos x=12.
若x∈[0,2π],则x=π3,
由终边相同角定义,∴S={x|x=2kπ+π3,k∈Z}.
17.(本小题满分12分)已知函数f(x)=Asin(ωx+φ)+2(A>0,ω>0)图像上的一个最高点的坐标为(π8,22),则此点到相邻最低点间的曲线与直线y=2交于点(38π,2),若φ∈(-π2,π2).
(1)试求这条曲线的函数表达式;
(2)求函数的对称中心.
【解】 (1)由题意得A=22-2=2.
由T4=3π8-π8=π4,
∴周期为T=π.
∴ω=2πT=2ππ=2,
此时解析式为y=2sin(2x+φ)+2.
以点(π8,22)为“五点法”作图的第二关键点,则有
2×π8+φ=π2,
∴φ=π4,
∴y=2sin(2x+π4)+2.
(2)由2x+π4=kπ(k∈Z)得x=kπ2-π8(k∈Z).
∴函数的对称中心为(kπ2-π8,2)(k∈Z).
18.(本小题满分12分)(2012•陕西高考)函数f(x)=Asin(ωx-π6)+1(A>0,ω>0)的最大值为3,其图像相邻两条对称轴之间的距离为π2.
(1)求函数f(x)的解析式;
(2)设α∈(0,π2),f(α2)=2,求α的值.
【解】 (1)∵函数f(x)的最大值为3,∴A+1=3,即A=2.
∵函数图像的相邻两条对称轴之间的距离为π2,
∴最小正周期T=π,∴ω=2,
∴函数f(x)的解析式为y=2sin(2x-π6)+1.
(2)∵f(α2)=2sin(α-π6)+1=2,
∴sin(α-π6)=12.
∵0<α<π2,∴-π6<α-π6<π3,
∴α-π6=π6,∴α=π3.
19.(本小题满分13分)已知y=a-bcos 3x(b>0)的最大值为32,最小值为-12.
(1)求函数y=-4asin(3bx)的周期、最值,并求取得最值时的x的值;
(2)判断(1)问中函数的奇偶性.
【解】 (1)∵y=a-bcos 3x,b>0,
∴ymax=a+b=32,ymin=a-b=-12,解得a=12,b=1.
∴函数y=-4asin(3bx)=-2sin 3x,
∴此函数的周期T=2π3.
当x=2kπ3+π6(k∈Z)时,函数取得最小值-2;
当x=2kπ3-π6(k∈Z)时,函数取得最大值2.
(2)∵函数解析式为y=-2sin 3x,x∈R,
∴-2sin(-3x)=2sin 3x,即f(-x)=-f(x),
∴f(x)为奇函数.
20.(本小题满分13分)函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的一段图像过点(0,1),如图所示.
图2
(1)求函数f1(x)的表达式;
(2)将函数y=f1(x)的图像向右平移π4个单位,得函数y=f2(x)的图像,求y=f2(x)的最大值,并求出此时自变量x的集合,并写出该函数的增区间.
【解】 (1)由题意知T=π=2πω,∴ω=2.
将y=Asin 2x的图像向左平移π12,得y=Asin(2x+φ)的图像,于是φ=2×π12=π6.
将(0,1)代入y=Asin(2x+π6),得A=2.
故f1(x)=2sin(2x+π6).
(2)依题意,f2(x)=2sin[2(x-π4)+π6]
=-2cos(2x+π6),xKb 1.
∴y=f2(x)的最大值为2.
当2x+π6=2kπ+π(k∈Z),
即x=kπ+5π12(k∈Z)时,ymax=2,
x的集合为{x|x=kπ+5π12,k∈Z}.
∵y=cos x的减区间为x∈[2kπ,2kπ+π],k∈Z,
∴f2(x)=-2cos (2x+π6)的增区间为{x|2kπ≤2x+π6≤2kπ+π,k∈Z},解得{x|kπ-π12≤x≤kπ+5π12,k∈Z},
∴f2(x)=-2cos(2x+π6)的增区间为x∈[kπ-π12,kπ+5π12],k∈Z.
图3
21.(本小题满分13分)已知定义在区间[-π,2π3]上的函数y=f(x)的图像关于直线x=-π6对称,当x∈[-π6,2π3]时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π2<φ<π2),其图像如图所示.
(1)求函数y=f(x)在[-π,2π3]上的表达式;
(2)求方程f(x)=22的解.
【解】 (1)由图像可知,A=1,T4=2π3-π6=π2,
∴T=2π.
∴ω=2πT=2π2π=1.
∵f(x)=sin(x+φ)过点(2π3,0),
∴2π3+φ=π.
∴φ=π3.
∴f(x)=sin(x+π3),x∈[-π6,2π3].
∵当-π≤x<-π6时,-π6≤-x-π3≤2π3,
又∵函数y=f(x)在区间[-π,2π3]上的图像关于直线x=-π6对称,
∴f(x)=f(-x-π3)=sin[(-x-π3)+π3]=sin(-x)=-sin x,x∈[-π,-π6].
∴f(x)=sinx+π3,x∈[-π6,2π3],-sin x,x∈[-π,-π6.
(2)当-π6≤x≤2π3时,π6≤x+π3≤π.
由f(x)=sin(x+π3)=22,得x+π3=π4或x+π3=3π4,
∴x=-π12或x=5π12.
当-π≤x<-π6时,由f(x)=-sin x=22,即sin x=-22得x=-π4或x=-3π4.
∴方程f(x)=22的解为x=-π12或5π12或-π4或-3π4.