汉语大全>八年级数学教案>探索三角形相似的条件(3)导学案

探索三角形相似的条件(3)导学案

详细内容

第六课时 探索三角形相似的条件(3)
【教学目标】1、通过探索与交流,得出两个三角形只要具备三边对应成比例,即可判断两个三角形相似的方法;
2、尝试选择判断两个三角形相似的方法,进一步解决生活中一些简单的实际问题;
【教学重点】两个三角形相似的条件(三)的选择和应用;
【教学难点】了解两个三角形相似的条件(三)的探究思路和应用;
【教学过程】
一、复习:
前面一节课我们探索了三角形相似的条件,回忆一下,我们探索两个三角形相似,可以从哪几个方面考虑找条件?两个全等三角形一定相似吗?如果相似,相似比是多少?两个相似三角形一定全等吗?对照判定两个三角形全等的方法,猜想判定两个三角形相似还可能有什么方法?
二、新知探索:
已知△ABC, 1、画△A′B′C′,使得 ; 2、比较∠A与∠A′的大小;
由此,你能判断△ABC和△A′B′C′相似吗?为什么?
设 ,改变k的值的大小,再试一试,
你能判断△ABC和△A′B′C′相似吗?
解:假设AB>A′B′,在AB上截取AB″=A′B′,过点B″作B″C″∥BC,
交AC于点C″,在△ABC与△AB″C″中,∵B″C″∥BC,
△ABC∽△AB″C″,∴ ,
又∵ ,AB″=A′B′,
∴B″C″=B′C′,C″A=C′A′,△AB″C″≌△A′B′C′,
△ABC∽△A′B′C′;

由此得判定方法三:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似;
几何语言:∵ ∴△ABC∽△A′B′C′
三、例题分析:
例1、根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由.
(1)∠A=100°,AB=5cm,AC=10cm,∠A′=100°,A′B′=8cm,A′C′=12cm;
(2) AB=4cm,BC=6cm,AC=8cm,A′B′=12cm,B′C′=18cm,A′C′=24cm.
例2、下列各组三角形中,两个三角形能够相似的是 ( )
A、△ABC中,AB=8,AC=4,∠A=105 o,△A′B′C′中,A′B′=16,B′C′=8,∠A′=100°
B、△ABC中,AB=18,BC=20,CA=35,△A′B′C′中,A′B′=36,B′C′=40,C′A′=70
C、△ABC和△A′B′C′中,有 ,∠C=∠C′
D、△ABC中,∠A=42 o,∠B=118 o,△A′B′C′中,∠A′=118 °,∠B′=15°
例3、下列说法不正确的是( )
A、两角对应相等的两个三角形相似 B、两边对应成比例的两个三角形相似
C、两边对应成比例且夹角相等的两个三角形相似 D、三边对应成比例的两个三角形相似
例4、下列说法:①所有等腰三角形都相似,②有一个底角相等的两个等腰三角形相似,③有一个角相等的两个等腰三角形相似,④有一个角为60 o的两个直角三角形相似,其中正确的说法是( )
A、②④ B、①③ C、①②④ D、②③④
例5、已知:如图, ,试说明:∠BAD=∠BCE

例6、画出符合下列条件的△ABC和△A′B′C′: ,∠C=∠C′=45°
(1)这两个三角形一定相似吗?
(2)若不相似,请你添加一个条件使它们一定相似.
学生练习:P100 1、2
例7、试说明:两个等腰三角形中,如果一腰和底对应成比例,那么这两个三角形相似;(自己画出图形并标上字母)
变题、如图,已知△ABC、△DEF均为等边三角形,D、E分别在AB、BC上,请找出与△DBE相似的三角形并加以说明;
例8、如图为三个并列的边长相同(都为1)的正方形,试说明:∠1+∠2+∠3=90°;


例9、要做两个形状完全相同的三角形框架,其中一个框架的三边长分别为3、4、5,另一个框架的一边长为6,怎样选料可以使两个三角形相似?
9、(2010 山东滨州)如图,在△ABC和△ADE中,
∠BAD=∠CAE,∠ABC=∠ADE.
(1)写出图中两对相似三角形(不得添加辅助线);
(2)请分别说明两对三角形相似的理由.

10、如图,在△ABC中,D是BC边上一点,E是AC边上一点.且满足AD=AB,∠ADE=∠C.
(1)求证:∠AED=∠ADC,∠DEC=∠B;
(2)求证:AB2=AE•AC.

如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。(8分)