对光纤光缆技术发展的思考(一)
详细内容
【摘 要】本文综述了光纤光缆技术发展的特点和趋势,并提出一些思考问题。
【关键词】光纤 光缆 技术 发展
一、光纤技术发展的特点
1.网络的发展对光纤提出新的要求
(1)扩大单一波长的传输容量。目前,单一波长的传输容量已达到40 Gbit/s,并进行160 Gbit/s的研究。40Gbit/s以上传输对光纤的PMD提出一定要求。(2)实现超长距离传输。无中继传输是骨干传输网的理想,目前一些公司已采用色散齐理技术,实现2000-5000km的无电中继传输;有的采用拉曼光放大技术,更大地延长光传输距离。(3)适应DWDM技术的运用。目前运用32×2.5Gbit/s DWDM系统,该系统对光纤的非线性指标提出了更高要求;ITU-T对光纤的非线性属性及测试方法的标准(G.650.2)已完成,对光纤的有效面积提出相应指标,对G.655光纤的非线性特性会有改善。
2.新型光纤产品的不断出现
(1)用于长途通信的新型大容量长距离光纤。康宁公司推出的Pure Mode PM系列新型光纤,利用了偏振传输和复合包层,用于10 Gbit/s以上的DWDM系统中,很适合于拉曼放大器的开发与应用。Alcatel cable推出的Teralight Ultra光纤,已有传输100km长度以上单信道40Gbit/s、总容量10.2 Tbit/s的记录。一些公司开发负色散大有效面积的光纤,提高了非线性指标的要求,简化了色散补偿方案,在长距离无再生传输和海底光缆长距离通信中效果很好。
(2)用于城域网通信的新型低水峰光纤。在城域网设计中,要考虑简化设备、降低成本和非波分复用技术应用的可能性。低水峰光纤在1360-1460nm的延伸波段使带宽被大大扩展,使CWDM系统被优化,增大了传输信道、增长了传输距离。一些城域网设计,要求光纤的水峰低和具有负色散值,可抵消光源光器件的正色散,可组合运用这种负色散光纤与G.652光纤或G.655标准光纤,利用它来做色散补偿,避免色散补偿设计,节约成本。
(3)用于局域网的新型多模光纤。随着局域网、用户住地网的高速发展,大量综合布线系统采用多模光纤代替数字电缆,多模光纤市场份额逐渐加大。选用多模光纤,是因为局域网传输距离较短,虽然多模光纤比单模光纤价格贵50%-100%,但它所配套的光器件可选用发光二极管,价格比激光管便宜,且多模光纤有较大的芯径与数值孔径,易连接与耦合,相应的连接器、耦合器等元器件价格也低。ITU-T至今未接受62.5/125μm型多模光纤标准,因局域网发展的需要,它仍然得到了广泛使用。而ITU-T推荐的G.651光纤,即50/125μm的标准型多模光纤,其芯径较小、耦合与连接困难一些。针对此问题,有的公司进行了改进,研制出新型的5O/125μm光纤渐变型(G1)光纤,区别于传统的50/125μm光纤纤芯的梯度折射率分布,将带宽的正态分布进行了调整,以配合850nm和1300nm两个窗口的运用。
3.光缆技术发展的特点
(1)光缆结构使用网络环境有明确的光纤类型选择,如干线网光纤、城域网光纤等,这决定了大范围内光缆光纤传输特性的要求,具体运用的条件,还有可依据的细分的标准及指标。(2)光缆结构除考虑光缆使用环境条件外,与其施工和维护方法有关,必须统一考虑,配套设计。(3)光缆新材料的出现,促进了光缆结构改进,如干式阻水料、纳米材料、“干缆芯”式、生态光缆、海底和浅水光缆、微型光缆、全介质自承式光缆、架空地线光缆等的采用,使光缆性能有明显改进。