汉语大全>高二数学教案>高二文科数学选修1-2数系的扩充和复数的概念导学案

高二文科数学选修1-2数系的扩充和复数的概念导学案

详细内容

石油中学高二文科数学选修1-2导学案---复数
§3-1 数系的扩充和复数的概念
学习目标:
1、了解引进复数的必要性;理解并掌握虚数的单位i
2、理解并掌握虚数单位与实数进行四则运算的规律
3、理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念
学习重点:
复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.
学习难点:
虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立
自主学习
一、知识回顾:
数的概念是从实践中产生和发展起来的 ,由于计数的需要,就产生了1,2及表示“没有”的数0.自然数的全体构成自然数集N 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然N Q.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有Z Q、N Z.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集
有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集
因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数 ,叫做虚数单位.并由此产生的了复数
二、新课研究:
1、虚数单位 :
(1)它的平方等于-1,即 ;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.
2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是- !
2、 的周期性: 4n+1=i, 4n+2=-1, 4n+3=-i, 4n=1
3、复数的定义:形如 的数叫复数, 叫复数的实部, 叫复数的虚部 全体复数所成的集合叫做复数集,用字母C表示*  
4、复数的代数形式: 复数通常用字母z表示,即 ,把复数表示成a+bi的形式,叫做复数的代数形式
5、复数与实数、虚数、纯虚数及0的关系:对于复数 ,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.

6、复数集与其它数集之间的关系:N Z Q R C.
7、两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等
这就是说,如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d  
复数相等的定义是求复数值,在复数集中解方程的重要依据  一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.
现有一个命题:“任何两个复数都不能比较大小”对吗?不对  如果两个复数都是实数,就可以比较大小  只有当两个复数不全是实数时才不能比较大小  

例题讲解
例1 请说出复数 的实部和虚部,有没有纯虚数?
答:它们都是虚数,它们的实部分别是2,-3,0,- ;虚部分别是3, ,- ,- ;- i是纯虚数.
例2 复数-2i+3.14的实部和虚部是什么?
答:实部是3.14,虚部是-2.
易错为:实部是-2,虚部是3.14!
例3 实数m取什么数值时,复数z=m+1+(m-1)i是:
(1)实数? (2)虚数? (3)纯虚数?
[分析]因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.
解:(1)当m-1=0,即m=1时,复数z是实数;
(2)当m-1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m-1≠0时,即m=-1时,复数z 是纯虚数.
例4 已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.
解:根据复数相等的定义,得方程组 ,所以x= ,y=4
课堂巩固
1、设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是( )
A.A∪B=C B. A=B C.A∩ B= D.B∪ B=C
2、复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足( )
A.x=- B.x=-2或- C.x≠-2 D.x≠1且x≠-2
3、复数z1=a+|b|i,z2=c+|d|i(a、b、c、d∈R),则z1=z2的充要条件是______.
4、已知m∈R,复数z= +(m2+2m-3)i,当m为何值时,(1)z∈R; (2)z是虚数;(3)z是纯虚数;(4)z= +4i.
归纳反思

课后探究
1、设复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果z是纯虚数,求m的值.

2、若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.