汉语大全>高二数学教案>三角函数图像的作法

三角函数图像的作法

详细内容

三角函数图像的作法
1、几何法:利用单位圆中的三角函数线,作出各三角函数的图像.以正弦函数为例,具体作法如下:

在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成12等份.过圆上的各分点作x轴的垂线,可以得到对应于角0, , , ,…,2π的正弦线.相应地,再把x轴上从0到2π这一段(2π≈6.28)分成12等份.把角x的正弦线向右平移,使得正弦线的起点在x轴上,再用光滑曲线把这些正弦线的终点连结起来,就得到了正弦函数y=sinx(x∈[0,2π])的图像.
2、描点法及其特例――五点作图法
三角函数的图像亦可用通常作函数图像的描点法作出.对于正弦函数及余弦函数可用五点法作出简图.
3、利用图像变换作三角函数图像.
三角函数的图像变换有振幅变换、周期变换和相位变换等.
由y=sinx的图像上的点的横坐标保持不变,纵坐标伸长(当A>1)或缩短(当0<A<1)到原来的A(A>0且A≠1)倍,得到y=sinx的图像,叫做振幅变换或叫沿y轴的伸缩变换.
由y=sinx的图像上的点的纵坐标保持不变,横坐标伸长(0<ω<1)或缩短(ω>1)到原来的 (ω>0且ω≠1)倍,得到y=sinx的图像,叫做周期变换或叫做沿x轴的伸缩变换.
由y=sinx的图像上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图像,叫做相应变换或叫做沿x轴方向的平移.
由y=sinx的图像上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图像叫做沿y轴方向的平移.
由y=sinx的图像变换到y=Asinx(ωx+φ)的图像,需要同时运用振幅变换、周期变换及相位变换,将由专门条目介绍.