五年级数学下册39-88页表格式导学案(西师版)
详细内容
课题: 长方体和正方体的表面积(一)
学校: 小学 主备教师: 教师
教学内容教科书第39页剪一剪的活动1,第41页练习十第1题。
教学目标知识与能力通过操作和观察,进一步熟悉长方体和正方体的特征以及它们的展开图(侧面展开图)。
过程与方法能计算长方体和正方体各个面的面积。在动手操作中理解表面积的含义。
情感、态度与价值观培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
教学重点知道长方体和正方体各个面的面积计算。
教学难点正方体的展开图。
教学准备长方体和正方体纸盒。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
探究新知1长方体和正方体表面的意义
(出示长方体和正方体模型)我们都知道长方体、正方体有6个面,是长方体或正方体露在外面的部分,我们就称这6个面为长方体或正方体的表面。我们能看到或摸到的这些部分都是这个物体的表面。
(出示三棱柱模型)它的表面是由几个面组成的?每个面是什么形状?
请大家拿出一件自己喜欢的物体,像刚才那样把它的表面介绍给你的同桌。
2剪一剪,看一看
3长方体和正方体表面积的意义
(板书:一个物体所有面的面积之和就是它的表面积。)为了更好地研究长方体和正方体的表面,我们把它们剪开来看看,怎么样?
通过剪一剪,我们清楚地看到了长方体、正方体表面的大小。像这样,一个物体表面所有面的面积之和就是它的表面积。
长方体或正方体的表面积指什么呢?
就是它的6个面的总面积。(板书:长方体或正方体6个面的总面积叫做它的表面积。)
课堂练习1实际操作
练习十第1题。
2判断
(1)长方体的6个面一定是长方形。()
(2)正方体6个面的面积一定相等。()
(3)一个长方体(非正方体)最多有4个面面积相等。()
(4)相交于一个顶点的三条棱相等的长方体一定是正方体。()学生独立完成,个别辅导。
课堂小结通过这节课的讨论学习,你有什么收获和体会?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 长方体和正方体的表面积(二)
学校: 小学 主备教师: 教师
教学内容教科书第39页例1
教学目标知识与能力结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。
过程与方法培养学生动手操作、观察、抽象概括的能力。初步的空间观念。
情感、态度与价值观让学生感受知识的形成过程,从而激发学生学学的兴趣。体会所学知识在实际中的应用价值。
教学重点长方体、正方体表面积的计算方法。
教学难点确定长方体每一个面的长和宽。
教学准备长方体、正方体纸盒(可展开)。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习引入前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?
出示一个长方体,指名摸它的表面。我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。
探究学习,至少需要用多少平方厘米出示例1:制作下面这样一个长方体的纸1探索长方体表面积的计算方法
的纸板?
请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?
4人小组合作完成这个长方体表面积的计算。
汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。
你能把这种求表面积的方法归纳一下吗?
为什么求出这3个面的面积和,再乘2就可以了?
你能把这种求表面积的方法归纳一下吗(长×宽+长×高+宽×高)×2。(师板书)
在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。
2探索正方体表面积的计算方法
:通过大家的积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?
出示一个正方体,让学生自主探索方法。
汇报交流。
能给大家讲讲你的想法吗?
正方体6个面的面积都是相同的。
你能把这种求表面积的方法归纳一下吗?
正方体的表面积=棱长×棱长×6。(师板书)我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面
长×宽×2+长×高×2+宽×高×2。
我们组是把6个面的面积分别算出来后再相加。
我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。
长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。
生1:我是把6个面的面积加起来。
生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。
生3:我觉得只要求出一个面的面积再乘6就可以了。
巩固练习1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。
2练习十第3题。先独立完成,再与同桌交流自己的算法。
课堂小结通过这节课的讨论学习,你有什么收获和体会?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 长方体和正方体的表面积(三)
学校: 小学 主备教师: 教师
教学内容教科书第40页的例2及相关练习。
教学目标知识与能力让学生进一步掌握长方体和正方体表面积的计算方法。
过程与方法能用所学的知识解决一些简单的实际问题,体会所学知识在实际生活中的价值。
情感、态度与价值观培养学生分析问题、解决问题的能力,以及动手动脑和同伴间协作的能力。
教学重点长方体和正方体表面积的计算方法
教学难点用长方体和正方体表面积的计算方法解决一些简单的实际问题。
教学准备一些长方体和正方体实物。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
创设情境上节课学习了什么知识?长方体、正方体的表面积怎么算?
(出示一个纸做的袋子)想知道做这样一个漂亮的纸袋子需要多少纸吗?想一想,解决这个问题要用到什么知识呢?
今天我们就运用长方体和正方体的表面积计算方法来解决这一实际问题。
探究学习1教学例2
请大家结合生活实际想想看解决这个问题还需要考虑什么问题?
让学生先试着计算,再交流汇报。
你是怎样计算的?
通过解决这个问题,你有什么收获?
我们要结合实际情况来思考,明确应算哪几个面。
2试一试
做这样一个灯笼(上下都是空的),至少需要多少红绸?
先让学生结合实际来思考应算哪几个面,再独立解决。
汇报交流:
他的思考方法很独特,明白这样算的原因吗?再把你喜欢的计算方法给同桌说说吧。师:在解决与长方体和正方体表面积有关的实际问题时,应注意些什么?(让学生进一步明确应结合实际来思考问题)学生齐读例2。
有一个面不做,只需要求出5个面的面积。
1:25×35×2+10×35×2+25×10=2700(cm2)。前后面左右面下面
2:(25×35+10×35+10×25)×2-10×25=2700(cm2)。六个面的面积上面
我是这样思考的:这个灯笼上下面都是空的,不需要做,只需求前、后、左、右4个面的面积。35×5×2+35×5×2=70(dm2)
我认为还可以这样算:35×5×4=70(dm2),因为它4个面的大小都是一样的。
课堂活动1教科书第41页的课堂活动第1题
让学生4人小组先猜一猜摆成的长方体或正方体的表面积会不会相等,再动手摆一摆,算一算。
汇报交流:
2课堂活动2
先动手量出计算表面积需要的数据,再算一算,然后同桌间相互交流,进一步知道计算表面积需要哪些数据,以及应怎样算长方体的表面积。量一量,算一算至少需要多少平方厘米的书皮纸。培养学生的动手动脑能力以及同伴间的协作能力。
课堂作业练习十第4题。运用长方体和正方体表面积的计算方法进行计算。汇报时谈谈需要求几个面的面积,怎样算。
课堂小结通过这节课的学习,你有什么收获和体会?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 体积与体积单位(一)
学校: 小学 主备教师: 教师
教学内容教科书第43~44页的例1、例2。
教学目标知识与能力让学生亲历猜测、观察、动手的过程,感知物体的体积及体积的含义。
过程与方法知道常用的体积单位有cm3、dm3、m3。
情感、态度与价值观在说一说、做一做的过程中对cm3、dm3形成比较明确的表象。
教学重点物体的体积及体积的意义。
教学难点体积的意义。
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
导入新课课件展示:比一比:
抽生说。
补充:说得对,图(3)是比较两个立体图形体积的大小。今天我们就来认识物体的体积。
图(1)是比较两条线段的长短,图(2)是比较两个平面图形的面积大小,图(3)是比较两个长方体的大小。
教学例11实验
(1)猜一猜:
出示装有带颜色水的量杯和土豆。
如果将土豆放入水中,水位会不会发生变化?怎样变化?为什么?
(2)看一看:将土豆放入水中,水位上升。
(3)想一想:把土豆从水中取出,水位又会发生什么变化?为什么?
教师将土豆从水中取出,水位下降。
(4)说一说:
分组讨论刚才的实验过程及水位变化的原因。
(5)做一做:
将杯中的沙子全部倒出,把你们的橡皮块或积木放进去,再把沙往杯子里装,你发现了什么?
。
谁能说说这是为什么?生回答后师概括:对,积木和橡皮块也占了一定的空间,放到杯子里就挤占了原来沙的空间,所以,沙就装不完了。
2概括
通过刚才的两个实验,你知道了什么?
小组讨论,抽生说。
通过实验,我们体会到了土豆、橡皮块、积木占有一定的空间。
是不是只有土豆、橡皮块、积木才会占有一定的空间呢?(不是)
对。比如说我们的书包装课本、文具盒等物品,放的书越多,书包剩下的空间就越小,就是因为这些课本、作业本、文具盒会占一定的空间。你还能举例说明物体占有一定空间吗?(如晚上洗脚,吹气球等。)
3归纳
请一大一小个子的两个学生站在一起,比较所占空间的大小。剩了一部分沙,装不进杯子里
教学例2同学们,和长度、面积一样,我们也常常需要给物体的体积确定单位。
1师生共做。
(1)画一条边长为1cm的线段,标出长度。
(2)画一个边长为1cm的正方形,标出边长和面积。
2从学具袋中拿出一个小正方体,量出它的棱长为1cm。
这个小正方体的体积就是1立方厘米。
谁能用自己的语言描述1立方厘米的大小?抽生说一说。
对,棱长为1cm的正方体的体积为1立方厘米,用字母表示为1cm3,读作1立方厘米。让学生在练习本上写一写1cm3,读一读。
3列举生活中体积为1cm3的物体的例子。
知道了1cm3的大小,你能举出身边哪些物体的体积大约是1cm3吗?
4小组活动。
用几个体积为1cm3的小正方体拼摆成不同的长方体,并说一说,这些长方体的体积分别是多少立方厘米?
5认识1立方分米。
同学们,我们除了以“立方厘米”作为物体的体积单位,还常常需要使用一些较大的体积单位,比如立方分米,你知道1立方分米是多大吗?
1立方厘米是棱长为1厘米的小正方体的体积,那么1立方分米就是棱长为1分米的正方体的体积。
棱长为1分米的正方体的体积是1立方分米,也可写作1dm3。请同学们在练习本上画一个棱长为1dm的正方体,看看它的体积有多大。
6找一找,生活中哪些物体的体积大约是1dm3?哪些物体的体积比1dm3大?哪些物体的体积比1dm3小?
我的小指头尖的体积大约是1cm3。
一颗骰子的体积大约是1cm3。
让学生用手比划一下1cm3的大小。
全课小结
同学们,今天这节课我们学习了什么?你有什么收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 体积与体积单位(二)
学校: 小学 主备教师: 教师
教学内容教科书第44~45页的例3、例4和课堂活动第1题和第2题,练习十一的第1~4题。
教学目标知识与能力使学生明确1m3的概念,建立1m3的大小观念。
过程与方法能区别使用1cm3,1dm3,1m3去度量物体的体积。
情感、态度与价值观感受数学与生活的密切联系,激发学生的学习兴趣。
教学重点各种体积单位的大小。
教学难点用体积单位去度量物体的大小。
教学准备米尺,棱长分别为1cm,1dm的正方体。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习引入(出示一根线、一张纸):一根线的长度用什么单位去度量?(长度单位)一张纸的大小用什么单位去度量?(面积单位)
(拿出一盒粉笔):粉笔盒的体积大小又该用什么单位去度量呢?今天,我们就来认识体积单位。
教学例3刚才同学们知道了1cm3,1dm3的大小,你能说说1m3的大小吗?
引导学生得出:棱长为1m的正方体的体积是1立方米,写作1m3。
你能用手比划一下1m3的大小吗?
我们已经认识了哪些体积单位?(1cm3,1dm3,1m3)
你能说说这三个体积单位谁是最大的?(1m3)谁是最小的?(1cm3做游戏:
3个学生用3块1m长的尺子在老师的帮助下在墙角围成一个正方体,这个正方体的体积是1m3,然后让学生依次钻进去。呀!1m3能装10个学生。
教学例4出示例4:1dm3等于多少立方厘米?
1dm3等于多少立方厘米?能用类似的方法推导出来吗?
展示推导过程:一排有10个,一层有100个,10层就是1000个,所以1dm3里有1000个1cm3。
归纳总结:课件展示将一个棱长为1dm的正方体分割成1000个棱长为1cm的小正方体的过程,并板书:1dm3=1000cm3。
用刚才的方法推导出1m3=1000dm3。
总结相邻两个体积单位间的进率。
提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
1dm3=1000cm3
1m3=1000dm3
得出:相邻两个体积单位间的进率是1000。将学生分组,用棱长是1dm的正方体推导。教师巡视指导,让每个学生在1dm2的纸上画出100个小格,然后贴在棱长为1dm的正方体纸盒(木块)的6个面上。
你能推导出1m3=()dm3吗?
学生可以分组讨论出结果,再抽生说一说推导的方法。
构建长度、面积和体积单位的计量系统相邻两个单位间的进率
长度单位mdmcm10
面积单位m2dm2cm2100
体积单位m3dm3cm31000
课堂练习
第48页练习十一第1题 练习十一第2~4题
课堂作业练习十一第2~4题。
全课小结同学们,今天这一节课我们学习了什么?你有什么收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 体积与体积单位(三)
学校: 小学 主备教师: 教师
教学内容教科书第46~47页的例5、例6,第48页课堂活动第1~2题,练习十一第5~6题。
教学目标知识与能力在观察与思考中理解容积的含义。
过程与方法知道常用的容积单位及相邻两个单位间的进率。
情感、态度与价值观能根据容积单位间的进率进行容积单位的互化。
教学重点容积的含义
教学难点相邻两个单位间的进率
教学准备能根据容积单位间的进率进行容积单位的互化。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习旧知1填空:
1m=()dm 1dm=()cm 1m2=()dm2
25dm=()m 100cm=()m 1dm2=()cm23
5m3=()dm 37500cm3=()dm3
怎么换算的。
2说说什么叫体积?常用的体积单位有哪些?
教学例5
教学例6
1容积的含义
演示:把牛奶盒子里的水倒入杯子里,能装满4个杯子。
思考:1盒牛奶的体积与1杯牛奶的体积一样大吗?
1盒牛奶可装4杯牛奶。这些牛奶盒、杯子都叫容器。一个容器所能容纳的物体的体积,叫做这个容器的容积。
2试一试
3容积单位升和毫升
1毫升是指能容纳1cm3的物体的容积,用字母表示为1mL。1升是指能容纳1dm3的物体的容积,用字母表示为1L。
牛奶盒上的250mL和1L,就指的是它们的容积。
板书:1L=1000mL。
问:冰箱的容积指什么呢?
(1)引导学生认真审题:210L合多少毫升,是将高级单位的数改写成低级单位的数。
(2)学生独立完成。
(3)抽生说一说并归纳方法。
高级单位的数×进率=低级单位的数
210×1000=210 000(mL)
答:电冰箱的容积大约合210 000mL。
2试一试
订正时归纳一下换算的方法。
低级单位的数÷进率=高级单位的数不一样大。因为1盒牛奶可以装4杯牛奶。
你能举例说明生活中哪些物体是容器,并比一比它们容积的大小。
看看你们早上喝的牛奶的盒子上都写着什么?(250mL,1L……)
你知道这是什么意思吗?
让知道的学生说一说“mL”是毫升,“L”是升。
生活中,哪些物体常常以毫升或升为单位?(眼药水、饮料、牛奶等液体)
你知道体积单位和容积单位之间的关系吗?1立方厘米=1毫升1立方分米=1升
问:你能根据体积单位的进率推导出容积单位间的进率吗?
课堂活动1第48页的课堂活动第1题和课堂活动第2题。
2第46页课堂活动第3题。
课堂练习1练习十一第5题。
先独立连线,再集体评析。
2练习十一第6题。
学生独立完成,集体订正。
全课小结今天这节课我们共同研究了什么?你了解到了什么?学会了什么?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 体积与体积单位(四)
学校: 小学 主备教师: 教师
教学内容教科书第50页练习十一第7~8题和思考题。
教学目标知识与能力通过练习,使学生对体积和体积单位的认识更深入,能熟练进行体积单位的换算。
过程与方法培养学生独立分析和灵活运用知识解决问题的能力和习惯,培养学生的空间观念。
情感、态度与价值观体会数学与生活的联系。
教学重点独立分析问题的能力和灵活运用知识解决问题的能力的培养。
教学难点培养学生空间观念
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
基础练习填空
1dm3=()cm3 1m3=()dm 31L= mL 46.5m3=()dm3
1350dm3=()m3 2145cm3=()dm3
750mL=()L 76dm3=()L4
2L=()cm3 1m3=()cm3全班学生共做用手比划1cm3,1dm3,1m3的大小,并举例说明。
学生齐练,集体订正,订正时抽生说一说做4.2L=()cm3和1m3=()cm3的思考过程。
解决问题的练习1练习十一第7题
(1)题分析题意时,
引导学生明确花盆的容积为512mL,就说明这个花盆里可装512mL的泥土,但问题中的单位却是dm3,即:512mL=()dm3
(2)题方法同(1)题:816L=()mL
2练习十一第8题
先让学生认真读题,抽生说一说读题后有什么收获(了解自己每天饮水量为1100mL),再把盛满1100mL水的瓶子拿给学生看一看(帮助学生产生感性上的认识),在读题的过程中,你还有什么发现?(这个题有3个问题要解决),你准备怎么去做?(逐个解答)然后让学生独立完成在练习本上。
思考题引导学生观察并数一数有多少个? 组内交流你的数法。
说一说:这个几何体的体积是多少?动手操作。同桌合作:用学具摆一摆书上的几何体,数一数小正方体的个数,验证自己刚才数得对不对。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 长方体和正方体的体积计算(一)
学校: 小学 主备教师: 教师
教学内容教科书第51~52页的例1、例2,课堂活动及练习十二的1~3题。
教学目标知识与能力引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。
过程与方法会运用公式正确计算长方体和正方体的体积。
情感、态度与价值观渗透“猜测——实验探究——验证”的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。
教学重点1理解长方体和正方体的体积公式的推导过程。
2会计算长方体和正方体的体积。
教学难点长方体、正方体的体积计算的推导过程。
教学准备学生准备12个体积是1cm3的小正方体木块。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
问题引入小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?
你怎样想的 小结:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。
(出示一个长方体模型):要知道它的体积是多少,你有什么办法?
教师小结:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。那么,生3的方法是否成立?这就是我们这节课要学习的内容。
(板书课题:长方体和正方体的体积计算)可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。
将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。
量出长方体的长、宽、高,用长×宽×高。
问题探索探索长方体的体积计算方法
(1)4人小组合作“搭积木”。电脑出示活动要求:用12个体积是1cm3的小正方体木块拼成不同形状的长方体,
每排个数排数层数1cm3正方体的个数体积(cm3)
思考:
①长方体每排个数、排数、层数分别相当于长方体的什么?
②长方体的体积怎样计算?
(2)学生在合作交流中探讨长方体和正方体体积的计算
(3)用实例验证规律。
刚才我们发现长方体的体积=长×宽×高,这个公式对所有的长方体都适用吗?
学生从自己准备的学具中自由选取若干个1cm3的小正方体,搭成形状不同的两个长方体,验证每个长方体的体积是否等于它的长、宽、高的乘积,
让学生说说自己的发现。(板书:长方体的体积=长×宽×高)
看来我们的发现是正确的,请给自己一颗探索星。
(4)用字母公式表示长方体的体积计算方法。
(板书:V=a×b×h)
闭上眼睛想一想,求一个长方体的体积必须具备什么条件?
(5)反馈练习。
师(课件出示例2):怎样计算电脑包装箱的体积?
学生审题,独立完成。
2自学正方体的体积计算方法
(1)正方体的体积又怎样计算呢?猜猜看。
(2)你的想法正确吗,可以翻开书第52页看一看,也可以同桌交流自己的看法。
(3)说说正方体的体积计算方法,字母表示的方法(V=a•a•a或a3)。要计算正方体的体积,必须知道什么条件?
(4)反馈练习:
口答:这个正方体的体积是多少?学生让学生观察板书和长方体的立体图,想一想:如果用V表示长方体的体积,a表示长,b表示宽,h表示高,用字母怎样表示长方体体积公式呢?
相互评价,鼓励学生自主探索
课堂活动量一量、算一算。
(分组测量、并计算)
全课小结说说本课学习中你的收获。
作业练习十二第2、3题。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 长方体和正方体的体积计算(二)
学校: 小学 主备教师: 教师
教学内容教科书练习十二第4~6题,思考题。
教学目标知识与能力进一步探讨长方体、正方体的体积计算公式,知道(正)长方体可以用一个面的面积×高来计算的道理。
过程与方法能灵活应用公式准确地计算出物体的体积,
情感、态度与价值观培养学生的归纳概括能力和较强的计算能力。
教学重点掌握体积计算公式,并能灵活运用。
教学难点能用体积的有关知识解决生活中的较复杂的问题。
教学准备长方体、正方体模型。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习引入1长方体、正方体的体积计算公式是怎样的?
2计算下面图形的体积。(单位:m)
长方体和正方体的体积公式可以用一个公式来计算吗?学生计算
探索新知1观察:
长方体的体积=长×宽×高
长×宽实际上是求长方体的什么?
正方体的体积=棱长×棱长×棱长
棱长×棱长实际上是求正方体的什么?
得出:长×宽求的是长方体底面(或顶面)的面积,棱长×棱长求的是正方体一个面的面积。
长方体、正方体的体积公式还可以怎样表示?
长(正)方体的体积=一个面的面积×高(这个面所对应的高)
用字母表示为:V=Sh
2这一个面可以是哪些面呢?它所对应的高指的是什么?(出示长方体模型让学生指)
(1)上底(或下底)×长方体的高;
(2)左面(或右面)×长方体的长;
(3)前面(或后面)×长方体的宽。
正方体有这样的特征吗?
小结:因为正方体的每条棱是等长的,所以正方体的体积=一个面的面积×棱长。
3现在要求正方体和长方体的体积,你有几种办法?
4基本练习。
(1)一块长方体钢材,阴影面的面积是2.8dm2,这块钢材的体积是多少立方分米?
师:像这样的阴影面我们称作横截面。
师引导学生理解:横截面指的是哪个面?能直接根据题中告诉的信息进行计算吗?为什么?
强调:注意单位的统一。
根据学生的计算,归纳出解题策略和步骤:
审图形→想计算公式→统一单位
(2)一根长方体钢管的容积是10m3,如果它的横截面的面积是20dm3,那么这根钢管长多少米?
指导练习拓展练习。
练习十二第6题和思考题。
思考题提示:这个长方体木料厚2cm,限制了所截出正方体的最大棱长只能是2cm,沿这块木料的宽刚好能截成3段,沿它的长最多能截下5段。学生先独立思考,再在小组里交流,最后在全班汇报自己的解题方法。
课堂作业练习十二第4,5题。
课堂小结说说本节课你有什么收获。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 解决问题(一)
学校: 小学 主备教师: 教师
教学内容教科书第55页例1,练习十三第1,2题。
教学目标知识与能力进一步巩固长方体和正方体表面积的计算方法。
过程与方法能运用所学的知识解决生活中的一些简单问题,体会数学与生活的联系。
情感、态度与价值观培养学生分析问题和解决问题的能力。
教学重点长方体和正方体表面积的计算方法
教学难点用长方体和正方体表面积的计算方法解决实际问题。
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习引入1什么是长方体、正方体的表面积?
2怎样计算长方体、正方体的表面积?
3计算下面长方体和正方体的表面积。
教学例1思考:根据实际情况还要扣除什么的面积?
指名汇报,根据学生的回答板书:
8×6+(6×3+8×3)×2
=48+(18+24)×2
=48+84=132(m2)132-26
=106(m2)
答:粉刷的面积是106m 独立解答,并在4人小组内交流你的想法?
巩固练习练习十三第1题
提示:损耗的纸块面积应加上去。
练习十三第2题
仔细看图,数一数要计算哪几个面的面积。
全课总结
今天我们学习了什么?你有哪些收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 解决问题(二)
学校: 小学 主备教师: 教师
教学内容教科书第55~56页例2、例3课堂活动,练习十三第3~6题。
教学目标知识与能力让学生在丰富的数学信息中分析信息之间的相互关系
过程与方法,理清已知信息与所要解决问题之间的联系,确定解决问题的策略。
情感、态度与价值观培养学生的逻辑思维能力。
教学重点分析信息之间的联系,确定解决问题的策略。
教学难点分析数学信息间的联系。
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习旧知什么叫体积?什么叫容积?今天我们一起用体积和容积知识解决生活中较复杂的现实问题。
教学例2分析并整理信息
视频展示例2。说说自己获得了哪些信息?要解决什么问题?
根据学生的回答板书:
一辆汽车的长方体油箱,从里面量长9dm,宽5dm,高4.5dm。每升柴油的质量是0.82kg。这个油箱最多能装多少千克柴油?这些信息和问题中的关键词语是什么?(从里面里,最多)
师:为什么要从里面量呢?最多是什么意思?
独立列式解答
(抽生板演)。
9×4×45=2025(dm3)=2025(L)
202.5×0.82=166.05(kg)≈166(kg)
答:这个油箱最多能装166千克柴油学生阅读小组合作,探讨解题思路
(1)想:这个油箱装的柴油质量与什么有关?
(2)学生小组交流,写出解题的策略。
汇报讨论结果
要求这个油箱最多能装多少千克柴油,必须先算这个油箱的容积是多少?
教学例3
课件出示例3的文字部分,默读题,说说你获得了哪些数学信息?
问:从题中可知由正方体变为长方体,什么变了,什么没有变?
课件出示:
指名汇报,板书算法。
20×20×20=8 000(cm3)
8 000÷(25×16)=20(cm)
答:锻成的钢材的高是20cm。独立计算,并与同桌交流。
巩固练习1课堂活动以小组为单位说说生活中解决哪些实际问题需要计算长方体(正方体)的体积。2练习十三第4,5题
第4题,怎样理解“完全淹没”与“水会下降”的实际意义。
第5题,理解“用A型车运和用B型车运碎石体积不变”。
课堂小结这节课学习了什么?你学会了什么?有哪些收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 整理与复习(一)
学校: 小学 主备教师: 教师
教学内容教科书第59页整理与复习第1,2题。
教学目标知识与能力通过整理和复习,使学生进一步理解长方体和正方体相关知识的内在联系,并能灵活运用。
过程与方法在学生对这些形体认识和理解的基础上,进一步培养空间观念。
情感、态度与价值观让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神。
教学重点灵活运用知识解决实际问题。
教学难点
教学准备长方体、正方体模型各一个
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
回忆所学知识师(出示长方体和正方体模型):同学们对这两个物体一定很熟悉吧。它们一个是长方体,一个是正方体。关于长方体和正方体你都了解了哪些知识?
教师根据学生的回答,把本单元的主要知识点出示在黑板上。学生回答,回顾本单元的知识点。
系统整理本单元的知识
1揭示课题
今天这节课,我们就一起来对长方体和正方体的有关知识进行整理和复习。
2对知识点进行分类,做好铺垫
关于这一单元,我们应该从哪几方面进行整理呢?
3分组整理
在学生交流的过程中,教师巡视,对整理得有特色的小组,教师要心中有数,便于稍后的交流。
4学生汇报
哪个小组愿意把你们组整理的结果拿到前面来展示展示?
学生展示的同时要给大家介绍一下整理的内容。
听了他们组的介绍,你能不能对他们的整理进行评价?
其他小组分别评价,评价时既要说一说优点,也要指出不足。
哪个小组还愿意将你们组的整理结果向大家展示一下?
教师请几组上来展示,总结时先肯定他们的努力,以寻找优点为主,指出不足为辅,激发学生的积极性。
5归纳总结
刚才,同学们互相合作,整理出了长方体和正方体这一单元的主要内容,并且坦诚地对各小组的整理进行了评价。对于这一单元的知识,你还有需要提醒同学们注意的地方吗?
学生自由发言。同学们以小组为单位,把这些知识点从正方体和长方体的特征、表面积和体积三个方面进行整理,在整理时请将你对大家的友情提示和你们还没解决的问题提出来。现在由组长执笔,把你们整理的内容记录在纸上。
学生分组进行交流。
练习提高1基础练习
我们就利用刚才整理的知识解决一些实际问题。
(1)判断。
①棱长为6cm的正方体的表面积和体积相等。()
②把一个长方体分成相等的两部分,它的体积大小不变,所以表面积不变。()
③两个长方体的体积相等,表面积也一定相等。()
(2)填空。
①5800mL=()L=()dm3。
②一个保温瓶能装水4。
③一个长方体有个顶点,在长方体的一个顶点上相交了条棱,这三条棱分别叫做长方体的、、。(3)学生独立完成第59页第2题。
2实践练习
小正方体拼合,体积、表面积的变化情况。
(1)课件演示:将5个棱长是2cm的小正方体合成一个大正方体,体积和表面积又有怎样的变化?
(2)从这个实验中,你感受到了什么?
课堂小结这节课整理复习了什么?你有哪些收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 整理与复习(二)
学校: 小学 主备教师: 教师
教学内容教科书第60~61页第3~7题和思考题。
教学目标知识与能力使学生进一步理解长方体、正方体棱长和它们的表面积、体积计算公式间的联系,并能灵活运用。
过程与方法在学生对这些形体认识和理解的基础上,进一步培养空间观念;让学生在解决实际问题的过程中,感受数学在生活中的作用,体会数学的价值
情感、态度与价值观进一步培养学生的合作意识和创新精神
教学重点理解各种公式间的联系,并能准确计算。
教学难点灵活运用所学知识解决实际问题。
教学准备直尺、肥皂、绳子等
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
创设情境,导入新课肥皂是我们常用的物品,对它的作用我们都非常熟悉。可你们知道吗,工人叔叔在生产肥皂时还要计算一些数学问题,大家猜猜看,会是什么问题呢?
……
同学们想得真不错!在生产的过程中,有些问题就用到了我们已经学过的长方体和正方体的知识。今天这节数学课,这盒小小的肥皂就将成为我们学习中的小助手,和我们一起来整理和复习这些知识。
(板书:长方体和正方体的复习)学生自由发言讨论
理解应用,走进生活1基础练习
(1)课件演示第60页的第3题和第4题。学生独立解答,再集体评析。
(2)判断:
①一个长方体的长是2m,宽是8dm,高是5dm,那么它的体积是80dm3。
②一个正方体的棱长扩大3倍,表面积就扩大9倍。
③把一个体积为1dm3的纸盒放在桌面上,纸盒所占桌面的面积一定是1dm3。
④从里面量,棱长为4dm的正方体容器可以容纳64L的水。
师:通过刚才的整理,我们已经对长方体和正方体有了更清楚的了解和认识,大家的表现都很棒!下面我们就运用这些知识,帮助工人叔叔去解决他们在生产肥皂的过程中遇到的一些实际问题。
2实践操作
每小组一块新肥皂,注意分工合作。
如果把这块肥皂平放在桌子上,它所占桌面的面积最大是多少?最小是多少?
如果要给这块肥皂套上包装盒,不计算接头处与损耗材料,最少需要多少硬纸片?
如果要将这个包装箱用绳子打捆,其捆扎方法如教科书第60页第7题,用包装绳多少厘米?(打结部分的绳子长30cm)
课堂总结、拓展延伸复习完这个知识后你有什么收获?这节课还有什么遗憾或有什么意见要向老师和同学们说吗?
延伸:你能将这个肥皂的包装盒沿着某些棱剪开,不剪散吗?有几种不同的剪法?你能将展开的形状画出来吗?去试试吧!
小结:如肥皂装盒这样的一系列问题,在生活中有很多。这就说明数学就在我们身边,我们今后要学会用数学的眼光去观察物体,并从中发现问题、解决问题。
课堂练习整理复习第5,6题。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 综合应用:设计长方体的包装方案
学校: 小学 主备教师: 教师
教学内容教科书第62~63页综合应用:设计长方体的包装方案。
教学目标知识与能力通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。
过程与方法通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。
情感、态度与价值观培养学生的创新意识、策略意识、实践能力和空间观念。
教学重点让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。
教学难点
教学准备为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
课前引入观察自己桌上的学具盒,你发现这些学具盒有什么特点?
如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。
设想与摆放1设想与摆放
设想:
(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?
(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。
(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。
2记录与计算
(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)
(2)究竟哪种摆法会更节约包装纸呢?
师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。
(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。
为什么这种方案的用纸量会最少?在全班进行交流。摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。
交流与比较比一比谁的方案用纸少,并分析出用纸量不同的原因。
重点思考并讨论:
为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。
发现与思考1物体重合的面积越大,表面积就越小,包装用的纸也就越少。
2同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。
知识拓展解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。
课堂小结这节课我们学习了什么?你有什么收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 分数加减法(一)
学校: 小学 主备教师: 教师
教学内容教材第64~65页例1,练习十四第1,2,3题。
教学目标知识与能力让学生通过解决简单的实际问题,理解分数加、减法的意义。
利用学生已有的认知基础,发展学生的估算意识。
过程与方法初步探索异分母分数加减法的计算方法,让学生感受转化的数学思想。
情感、态度与价值观激发学生积极参与数学学习活动的兴趣,在探究过程中体验成功的喜悦。
教学重点初步探究异分母分数加减法的计算方法。
教学难点异分母分数加减法转化为同分母分数加减法的探索过程。
教学准备教师准备多媒体课件、投影仪。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习铺垫
看图说分数的意义
通分
2/7和1/3 5/9和3/8
通过刚才的练习,同学们对学过的分数知识掌握得很好,今天我们继续研究有关分数的知识。
板书课题:分数加减法(一)抽学生说每个分数的意义。
学生独立完成,集体订正。
探究新知
1情境引入,提出问题
(1)课件出示主题图:学生观察并说一说获得了哪些数学信息。
(2)估一估,今天能将这个广场铺完吗?
(3)根据这些信息,可以提出哪些数学问题?
学生提数学问题,教师选择性的板书。
①今天一共铺了这个广场的几分之几?
②今天下午比上午多铺了这个广场的几分之几?
③到今天为止,一共铺了这个广场的几分之几?
2主动参与,解决问题。
(1)理解分数加减法的意义。
根据题中的信息,第①题和第②题该怎样列式呢?动笔写一写。
抽生汇报,教师板书:1/16+7/16=,7/16-1/16=。
抽生说一说算式的意思。
理解:分数加减法和整数加减法的意义相同。
(2)利用分数的意义,理解同分母分数的算理,并总结其算法。
动笔算一算1/16+7/16,说说是怎样想的。
抽生汇报。
他们认说得对呢?我们画图来验证吧!
课件出示:两个相同的长方形,都被等分成16份。
引导学生发现:求1/16+7/16就是求涂色部分占长方形面积的几分之几。
通过画图,涂色部分占长方形面积的几分之几呢?
板书结果:1/16+7/16=8/16。
为什么1/16+7/16=8/16,和的分母还是16?
引导学生通过看图发现:它们的分数单位没有发生变化,都是116,相加的只是分数单位的个数。
师强调:计算结果要约成最简分数。
板书:1/2。
学生独立计算716-116=。
抽生说结果,并说一说是怎样想的。
预设:
生:7/16-1/16=6/16=3/8。因为7/16有7个1/16,7个1/16比1个1/16多6个1/16,也就是6/16。
引导学生观察这两个算式:716+116=816=12716-116=616=38,它们的分母有什么特点?。
引导学生归纳出:同分母分数相加减,分母不变,只把分子相加减。结果要化成最简分数。(教师板书)
(3)探究异分母分数加减法的计算方法。
(指板书)第③个问题又该怎样列式呢?
观察这个算式,它们的分母相同吗?分母不同的分数又该怎样计算呢?学生独立思考,再小组交流自己的想法。
计算12+14时,分子能直接相加吗?为什么?
生:不能直接相加,因为分数单位不同。
在刚才同学们介绍的方法中,都是把不同的分母怎样进行变化?
引导学生发现:把分母不同的分数化成分母相同的分数。
教师板书计算的过程:1/2+1/4=2/4+1/4=3/4。
师生共同完成答语。
板书:1/2-1/4=2/4-1/4=1/4。
通过刚才的活动,你能用自己的话说说:分母不同的分数又该怎样计算?
引导学生总结:异分母分数相加减,就是把异分母分数通分化成同分母的分数,再相加减。同桌交流估算的过程。
学生说一说是怎样估算的。
学生独立完成第65页第(4)题
学生汇报。
应用与拓展1练习十四第1题,学生独立完成在书上。
2练习十四第3题。
总结全课这节课你有什么感受或收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 分数加减法(二)
学校: 小学 主备教师: 教师
教学内容教科书第65~66页例2,第66页课堂活动,练习十四第4~7题。
教学目标知识与能力进一步探索异分母分数加减法的计算方法,并概括归纳成法则。
过程与方法能灵活地运用计算法则,正确地进行异分母分数加减法的计算。
情感、态度与价值观培养学生对知识的迁移、归纳能力,以及灵活运用知识解决问题的能力。
教学重点掌握异分母分数加减法的计算法则。
教学难点熟练地运用通分的方法解决异分母分数不能直接相加减的问题。
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
以旧引新1我会算。
2/5+1/5 5/8-3/8 5/6+4/6 9/7-4/7 1/8+7/8
13/17-5/17 5/9-5/9 2/19+5/19+1/19
小结:分母相同的分数相加减,只要把分子相加减,分母不变。最后的结果要化成最简分数。2我能算:3/4+1/2,7/8-1/4。
我们已经会把分母不同的分数变成分母相同的分数,再进行计算。今天这节课,我们要研究异分母分数加减法的计算时,怎样做得又对又快。
板书课题:异分母分数加减法抽学生说答案。
抽两生上台板演,其他学生独立完成。
合作交流,深入探究
1教学例2
板书:8/9-5/6。
板书:8/9-5/6=48/54-45/54=3/54=1/18。
板书:8/9-5/6=16/18-15/18=1/18。
师小结:这两种方法都行。都是先通分,把两个分数化成同分母的分数,再计算。
2选自己喜欢的方法计算
2/15+7/10
学生独立完成,抽生汇报。
教师板书:2/15+7/10=4/30+21/30=25/30=5/6。
教师板书:2/15+7/10=20/150+105/150=125/150=5/6。
教师板书:2/15+7/10=8/60+42/60=50/60=5/6。
……
算法的优化:引导学生发现,这些方法中第一种方法更简便些。用分母的最小公倍数做公分母,数据小一些,便于计算,不容易出错。
3尝试练习:试一试
教材第66页,例2的试一试。
计算:5/6+7/8 15/17-2/3 1/8-5/12 3/8+1/5
学生独立计算,教师巡视,并个别辅导。
小组内交流计算方法。
集体订正。
4梳理算法
同学们通过积极动脑、动手,能正确的、比较熟练的计算异分母分数的加减法。你能用自己的话说说我们是怎样计算的?
抽生说一说。
指导学生读课本第66页,并勾画下来。提醒补充:计算的最后结果要化成最简分数。学生动笔尝试计算8/9-5/6。
小组交流算法,并对同伴的算法进行评价。
学生汇报,全班交流
巩固练习,拓展深化
1课堂活动第1题。
2课堂活动第2题。
3练习十四第4,5,6题。
总结全课通过今天的学习,你有什么收获?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 分数加减法(三)
学校: 小学 主备教师: 教师
教学内容教科书第70~71页的例3及试一试。
教学目标知识与能力理解整数的加减混合运算顺序在分数加减混合运算中同样适用的道理;认识带分数。
过程与方法会用所学知识灵活解决混合运算中的问题,提高应用能力。
情感、态度与价值观激发学生参与数学学习的兴趣,获得成功体验,建立信心。
教学重点分数的加减混合运算中怎样通分。
教学难点分数的加减混合运算中怎样通分。
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习铺垫
1出示口算卡片
2/7+1/7 1/4+1/2 8/9-4/9 7/8-1/4 1-3/5 2/5+7/15
2复习整数加减混合运算
(1)56+32+28 95+42-21 56-(21+14)
(2)整数加减混合运算的运算顺序是怎样的?
学习新知结合情境,感悟分数混合运算顺序。
(1)教学例3(课件展示)。
观察图,你获得了哪些数学信息?
想一想,怎样解决这个问题呢?。
为什么用加法算?这是一道什么算式?(分数连加)
这是一道分数连加的算式。想一想,你准备怎样来计算这道题呢?说出理由。
它的运算顺序是怎样的?
引导学生看课件上的图)
学生独立解答,然后展示解题
算法一:3/5+2/3+2/5=9/15+10/15+6/15=25/15=5/3
算法二:3/5+2/5+2/3=1+2/3=12/3
算法一是先把三个数一次性进行通分,再加。算法二是先算35+25得出1,再加23得1+23。我们前面操作的结果就是1瓶又23瓶,说明这样计算是正确的。1+23可以写成123。(2)自主学习,认识带分数。
像12/3这样的分数又叫什么分数呢?怎么读?请同学们看教科书第70页。
像12/3这样的分数是带分数,读作:一又三分之一。
123在本题中表示的含义是1瓶多23瓶。53和123这两个结果相等吗?(充分让学生说说自己的想法。可画线段图表示两个分数来比较。)
53和123相等,带分数123只是假分数53的另一种表现形式。:53怎样改写成带分数123?
教师
引导出53=5÷3=123。
归纳假分数化带分数的方法:用分母除以分子,整数商作带分数的整数部分,余数作带分数分数部分的分子,原分母作带分数分数部分的分母。
(3)尝试练习,理解分数混合运算顺序,弄清计算步骤。
教科书第71页试一试:
815+25+1234-15-3846-14+1112
师:观察这几道题,它们分别是什么样的算式?运算顺序是怎样的?
教师展示学生的作业,请学生分别说说每题的计算步骤。有不同算法的作业都展示出来。
观察这几道题的算法,比较这些算法有什么异同点?
总结:计算异分母分数的加减混合运算时,必须先把相加减的异分母分数通分,化成同分母分数。通分时可以分步计算,分步通分;也可以一次通分,然后再计算。注意计算时根据题目的特点和自己的方便来选择通分的方法。第一瓶剩下的酒精是3/5瓶,第二瓶剩下的酒精是2/3瓶,第三瓶剩下的酒精是2/5瓶,求“一共剩下多少瓶酒精。”
学生先独立思考,然后全班交流。
我认为应该先确定它的运算顺序。
小组讨论后汇报,
总结新知,揭示课题今天我们学习了哪些知识?(板书课题)这节课还有哪些收获?还有什么不懂的问题?
课堂作业练习十五第2题第一横排。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 分数加减法(四)
学校: 小学 主备教师: 教师
教学内容教科书第71页例4,练习十五第2,3题。
教学目标知识与能力理解、掌握有括号的分数加减混合运算的计算方法,并能正确计算。
过程与方法能综合运用所学的知识和技能解决计算中的问题,发展应用意识。
情感、态度与价值观在合作交流中,培养学生合作学习的意识和能力。
教学重点找单位“1”
教学难点理解进行有括号的分数加、减混合运算时,要先算括号里的道理。
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
创设情境,引入新知课件展示例4同学们打扫卫生的情境图。出示:全班同学中,擦门窗的占14,擦桌子的占29,其余的扫地。
观察图,你获得了哪些数学信息?
根据这些信息,你能提出哪些数学问题呢?
现在我们先来解决“扫地的同学占全班同学的几分之几?”
合作交流,探究新知1教学例4
怎样解决这个问题?
小组合作学习解决以下几个问题。(课件展示)
(1)擦门窗的占14是占谁的14?擦桌子的占29是占谁的29?
(2)这里是把谁看作单位“1”?
展示学生的解题结果。
解法一:1-29-14=99-29-14=79-14=3636-1736=1936
解法二:1-(29+14)=1-1736=2836-936=1936
能说说你们的想法吗?
计算时你是怎样想的?为什么把1看成99来计算?
把全班同学看成单位“1”,我和他不一样的是先算出擦门窗的和擦桌子的共占全班同学的几分之几,然后再用1去减它们的和,其中把1看成3636是因为1736的分母是36。
为什么要先算括号里面的,再算括号外面的?
要先算出擦门窗的和擦桌子的共占全班同学的几分之几,然后再算扫地的占全班同学的几分之几,所以要先算出括号里面的,再算括号外面的。
学生把教科书第71页例4中的结果填完整。
看书思考,这两种解法有什么异同?
学生独立思考,小组内交流后再回答。
生:运算顺序不同。解法一是连减,按从左到右的顺序计算;解法二有小括号,先算小括号里面的,再算括号外面的。它们的计算结果相同。
2尝试练习,理解有括号的分数混合运算的顺序
35+(34-12)1112-(16+34)
学生先独立解答,然后展示作业。(不同的算法都展示出来)
这两道题是什么样的算式?运算顺序是怎样的?
异分母有括号的分数混合运算,应先算括号里面的,再算括号外面的。
总结:今天我们学习的是异分母有括号的分数混合运算,它的运算顺序和整数有括号的混合运算顺序相同,都是先算小括号里面的,再算括号外面的。在计算时分母不同的要化成同分母分数来计算,可分步通分,也可一次通分。可以根据题目的特点和自己的方便来选择方法。(板书课题)
注意:第二小题结果是012,把它写成0。因为分子是0的分数等于0,当计算时出现分子是0的分数时都直接把结果写成0。要求学生独立思考,讨论后再回答。
擦门窗的占14是占全班同学的14,擦桌子的占29是占全班同学的29。
它们是把全班同学看作单位“1”时产生的分数。
学生试着列出算式并解答出来。
我是用连减的方法,把全班同学看成单位“1”,先减去擦桌子占的29,再减去擦门窗占的14,剩下的就是扫地的占全班同学的几分之几。
巩固新知,拓展练习教科书第73页练习十五第2题第二横排和第3题。
课堂总结今天你学了哪些知识?知道了什么?还有哪些不懂的?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 分数加减法(五)
学校: 小学 主备教师: 教师
教学内容教科书第72页例5及课堂活动。
教学目标知识与能力理解整数加法运算定律在分数加法中同样适用的道理。
过程与方法计算分数加减法时,能根据具体的数据,选择合理的算法,使一些计算简便;继续培养学生的观察、分析能力和思维的灵活性。
情感、态度与价值观感受运用数学知识可以解决一些生活中的实际问题,增强应用意识。
教学重点理解整数加法运算定律在分数加法中同样适用的道理。
教学难点选择合理的算法
教学准备多媒体课件、视频展示台、小黑板。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习铺垫,引入课题下面的各等式应用了什么规律?这些运算定律有什么作用?
小黑板出示:56+782=782+56
(89+475)+25=89+(475+25)
指学生回答。
加法的交换律和结合律适用于整数和小数。能否应用到分数加减运算中呢?我们这节课就来研究这个问题。
(板书课题:整数加法运算定律推广到分数加法)应用了加法的交换律和结合律,应用这些运算定律可以使计算简便。
探究新知,归纳总结1教学例5
多媒体出示例5的情境图。
你从情境图中获得哪些数学信息?
根据这些信息,你能提哪些数学问题?
(学生提出一步应用题,可让学生直接列式。)
教师板书问题:种树的面积占这片荒地面积的几分几之几?
师:这三种算式都正确吗?理由呢?
生:这三个算式都应该是正确的。因为前两种是把三种树的面积合起来,而第三种是把松树的面积和柏树的面积先合起来,再加上果树的面积,这三个算式都是在求三种树的面积之和。
独立计算,教师巡视指导。
展示算法。
512+37+112512+112+3737+(512+112)=3584+3684+784=612+37=37+612=7184+784=12+37=37+12=7884=714+614=614+714=1314=1314=1314
通过上面的计算,你发现了什么?
512+37+112=512+112+37=37+(512+112)。
师引导学生发现:整数加法的运算律不仅对整数和小数的加法运算适用,对分数加法的运算也同样适用。
2教学教科书第73页的“课堂活动第2题”
112+817+917+512 1125+713-125+613
根据这两道题的数据特征,怎样算简便?计算的依据是什么?
学生独立完成,教师巡视,个别辅导,集体订正。
根据什么想到这样计算?
观察到算式中有分母相同的分数,应用加法的交换律和结合律先算同分母分数,这样可以使计算简便。
3尝试练习
完成教科书第88页的“试一试”。
学生独立完成,教师巡视,个别辅导,集体订正。
引导学生小结:应用加法的运算定律可以把分母相同的分数先相加,或凑成整数再计算比较简便。学生独立列式。抽生汇报列式:512+37+112512+112+3737+(512+112)
课堂活动小黑板出示课堂活动“算一算,议一议。”
第1小题:1-415-1115。
计算结果是0,还是015?为什么?
如果学生不能根据分数与除法的关系来解释,教师应及时地讲解。
第2小题:78-524+1124。
通过前面的学习,这道题应怎样计算才更简便?有什么根据?小组讨论后汇报。
小结今天学习了什么?你知道了什么?是怎样学习的?
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 整理与复习
学校: 小学 主备教师: 教师
教学内容复习本单元的知识。
教学目标知识与能力通过复习,能完整有序地构建本单元的知识体系。
过程与方法通过复习,能运用本单元的知识解决一些生活中的实际问题。
情感、态度与价值观经历复习的过程,进一步提高归纳整理的能力和自学能力。
教学重点
教学难点
教学准备投影仪、视频展示台。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
学生独立整理本单元各部分内容这个单元学习完了,学习了哪些知识呢?请同学们独立整理复习这一单元的知识,整理时主要从以下几个方面考虑:
1学习了哪些知识?
2这些知识的主要内容是什么?并举例说明。
3学习这些知识时主要使用了什么学习方法?
教师巡视辅导。学生独立完成。
正确构建本单元知识结构
学生汇报,展示整理的内容。
1同分母分数加减法。
计算方法:分母不变,只把分子相加减。
举例:29+59=79;57-17=47。
2异分母分数加减法。
计算方法:先通分,再计算。
举例:13+14=412+312=712;13-14=412-312=112。
3分数加减混合运算。
计算方法与整数加减混合运算相同。
举例:1112-34+13=1112-912+412=212+412=612=12。
4带分数。
(1)读法。举例:127读作一又七分之二。
(2)假分数化带分数。
举例:52=5÷2=212。
学习方法:转换、推理、听讲、计算、讨论、分析、综合、归纳等。
引导学生比较评价。
学习本单元的时候,学习方法使用得最突出的是哪一种?
应用转换的方法,可以把一些没有学习过的知识转换为已学的知识,这是一种在我们的学习生涯中经常会使用的方法。在生活中也可以应用转换的方法,把一些陌生的问题转换成熟悉的问题来解决,给我们的学习和生活带来方便。希望大家学以致用。注意引导学生对每种方法进行观察、补充、完善,并进行评价。
学生交流后汇报。(转换)
课堂练习1一堆苹果96筐,第一次运走总数的18,第二次运走总数的38,一共运走这堆苹果的几分之几?
2压岁钱。
小红过春节时收到了一些压岁钱。捐给希望工程的占37,买学习用品的占27,剩下的存入银行。存入银行的钱占全部压岁钱的几分之几?
3一节课40分,老师讲解用了这节课的720,学生讨论用去这节课的310,还有练习用了14分。
根据上面的信息,请你提出数学问题,并解答。
学生独立完成,集体订正。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 用字母表示数(一)
学校: 小学 主备教师: 教师
教学内容教科书第80~81页例1、例2和课堂活动第1题,练习十六2,3,4题。
教学目标知识与能力使学生理解和掌握用字母表示数的方法,知道用字母可以表示数,知道含有字母的式子。
过程与方法让学生初步感受用字母表示数的优越性,培养学生的符号感。
情感、态度与价值观让学生在学习过程中获得成功体验,体会数学的简洁美。
教学重点
教学难点
教学准备
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
引入课题请学生浏览主题图,然后齐唱字母歌。
我们都知道,上英语课要用到字母。在我们的生活中,哪些地方还用到了字母?并说说它表示的意义。
在生活中要用到字母,在数学中也不例外,今天我们就来学习用字母表示数。(板书课题)
进行新课请同学们回忆我们前面学过了哪些运算定律?用字母表示运算定律,完成书第80页的表格。(集体订正)实际上,用字母表示数在我们的生活中还有着广泛的作用。
(出示第80页例1)
同学们先来看这样一张失物招领,你对这个招领中的哪个词感兴趣?
生:人民币x元。
这个词是什么意思?
生:没有一个准确的数,可能是5元,也可能是10元、34元……可以表示任意一个数。
那为什么不直接写出钱数呢?
生:直接写出钱数不是可能被人冒领吗?:这里用x表示钱数是为了保密。我们再来看数学兴趣小组的活动安排。
数学兴趣小组活动安排
(1)拼组七巧板。(每组2副七巧板)
(2)综合实践。(每组解决3个问题)
(3)算24点。(2人一组,每次随机出4张牌)
(4)数学趣题。(5人一组,思考一道题)
你们对哪个问题最感兴趣呢?
学生举手选出一个问题。下面以算24点为例。
用“2个一组,每次随机抽出4张牌”这个条件,你能提出哪些数学问题?
一个学生提问,其余解答。
……根据学生解答,教师板书。
这样的问题能提完吗?你能写完这样的算式吗?
不能。
应该怎样办?
你们觉得用哪种方法表示好呢?
学生讨论后回答:很明确地告诉我们总人数是组数的2倍这个数量关系。
这里的x表示什么?
同桌讨论:
(1)当x表示25时,总人数是多少?
(2)当总人数是60人时,x表示多少?
我们用2×x来表示总人数,只可以用x这个字母吗?
学生讨论得出:还可以用2×a,2×b,2×c,2×d……
在含有字母的式子里,数字和字母、字母与字母之间的乘号可以记作“•”,也可以省略不写,并且数字要写在字母的前面。
教师边讲边作示范,把2×x写作2x;并要求学生试着把2×a,2×b,2×c,2×d写成省略乘号的算式。
引导学生2人一组为单位拍手说儿歌:1只青蛙4条腿,2只青蛙8条腿……
1只螃蟹8条腿,2只螃蟹16条腿……
谁能用一句话来概括?
用字母表示数的好处是什么呢?
简明。学生完成
巩固练习1课堂活动第1题。
2完成第83页练习十六2,3,4题。
小结(略)
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 用字母表示数(二)
学校: 小学 主备教师: 教师
教学内容教科书第81页例3和课堂活动第2题练习十六1,5,6,7,8,9题。
教学目标知识与能力使学生理解和掌握用字母表示数量关系的方法。
过程与方法让学生初步感受用字母表示数量关系的优越性,进一步培养学生的符号感。
情感、态度与价值观培养学生的归纳概括能力和初步的逻辑思维能力。
教学重点
教学难点
教学准备教师准备多媒体课件和视频展示台。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习引入前面我们学习了用字母表示数和用字母表示简单的数量关系,这节课我们继续研究用字母表示简单的数量关系。
(板书课题)
火车的速度是汽车的2倍,如果汽车每小时行45km,求火车每时行多少千米,用什么式子表示?
如果汽车每小时行50km,又该用什么算式来表示呢?
请同学们填写大屏幕上的表格。
(多媒体课件演示)
汽车速度(km/h)455055x
火车的速度是汽车的2倍
为什么汽车每时行驶xkm时,火车的速度是2x呢?学生完成后,抽学生的作业在视频展示台上展出。
进行新课.教学例3
下面我们再来研究一个问题。
(多媒体课件出示例3)
你能找出哪句话能说明小丽的岁数与小强岁数的关系吗?
指导学生找出表明小丽的岁数与小强岁数关系的那句话是“我比你大2岁”,也就是说“小丽比小强大2岁”。
有了这句话以后,我们就可以推测小丽的岁数了。下面请同学们用这句话来完成大屏幕上的表格。
多媒体课件显示。
小强的岁数(岁)9101112a
小丽的岁数(岁)9+2
小强是a岁时,小丽的岁数就是(a+2)岁。
a+2不仅能清楚地表示出小丽的岁数,还清楚地表明了小丽与小强岁数的关系,凭这个数量关系我们就可以根据小强的岁数来算小丽的岁数了。如果小强2岁时,小丽多少岁?
2+2=4(岁)。
小强15岁时,小丽又是多少岁呢?
15+2=17(岁)。
下面同学们可以像老师这样随便说一个小强的岁数,让你的同桌猜出小丽的岁数。
你发现用a+2来表示小丽的岁数有什么好处?
引导学生总结出用a+2可以清楚简明地表示出小强岁数与小丽岁数的关系。
2 完成试一试
3.教学练习84页练习十六第7题
刚才我们讨论了两个小朋友的年龄问题,下面我们到商店去看一看。
(多媒体课件出示1个中国结和1个小灯笼)
春节快到了,商店里的中国结和小灯笼特别畅销,这里如果一个中国结的单价是a元,那么每个小灯笼总是比每个中国结少5元。
(多媒体随教师的讲解出示中国结的单价和小灯笼比中国结少5元的字样)
a-5表示什么?3a又表示什么?
引导学生回答出“a-5”表示每个小灯笼的价格,3a表示3个中国结的价格。
师:请同学们填一填第84页练习十六第7题这个表,如果这个表表示的是刚才老师说的中国结与小灯笼价格的关系,那么表中这些数又分别表示什么?
引导学生说出表中的数分别表示中国结的单价是7元、12元、20元、8.5元和10.4元时,每个小灯笼和3个中国结的价格。
抽一个学生的作业在视频展示台上展出,同时让学生说一说每个表中数据表示的意思以及是怎样计算出来的。
课堂小结略
课堂作业1学生独立完成第82页课堂练习第2,3题,完成后全班集体订正。
2独立完成练习十六1,5,6,8,9题,集体订正。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 用字母表示数(三)
学校: 小学 主备教师: 教师
教学内容教科书第85页例4和“试一试”,第86页课堂活动和练习十七第1,2,3,4,7题。
教学目标知识与能力使学生理解和掌握用字母表示周长、面积和体积计算公式的方法
过程与方法能熟练地记忆用字母表示的周长、面积和体积公式并能用这些公式计算图形的周长、面积和体积。
情感、态度与价值观进一步培养学生的归纳概括能力和初步的逻辑思维能力。
教学重点
教学难点
教学准备教师准备多媒体课件和视频展示台。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习引入学习了用字母表示数和简单的数量关系,请同学们用前面学习的知识回答大屏幕上的问题。
多媒体课件显示:一本刚出的卡通书预计每本x元,每本童话书比每本卡通书贵12元。
x+12表示(),5x表示();
如果每本卡通书定价为9元,每本童话书应该定价为()元;
如果每本卡通书定价为6元,买4本同样的卡通书要()元,买3本同样的童话书要()元。
字母不但可以表示数和简单的数量关系,还可以表示我们学习过的图形的计算公式,这节课我们就来一起研究用字母表示周长、面积和体积公式。学生完成后,抽学生的作业在视频展示台上展出,并说一说自己为什么要这样填。
能说一说我们学习过的正方体的底面积和体积的计算公式吗?
这个公式字太多,写起来比较麻烦,如果用字母来表示这个公式,就比较简单明了。在几何图形中哪个字母表示什么是规定了的,这样便于大家都知道这个字母公式的意思。比如在正方体中,就约定俗成地用S来表示正方体的底面积,V表示正方体的体积。
那么如果用S表示正方体的底面积,a表示棱长,正方体的底面积计算公式又应该怎样表示呢?
这里a×a还可以写成a2,表示两个a相乘,读作“a的平方”。来,和老师一起读一遍。
S=a2。
师:如果用V表示正方体的体积,用a表示正方体的棱长,那么你认为该怎样表示正方体体积的计算公式呢?
学生讨论后回答:V=a×a×a或V=a•a•a。
这里的“a•a•a”可以写作a3,读作“a的三次方”或者“a的立方”。
正方体的体积还可以怎么表示吗?
V=a3。
2.教学“试一试”
从表中你发现我们一般用哪个字母表示周长,哪个字母表示面积,哪个字母表示底和边长吗?
指导学生说出一般用C表示图形的周长,用S表示图形的面积,V表示图形的体积。用a表示图形的底、正方形的边长、长方形的长,用b表示长方形的宽,用h表示图形的高。
学生讨论填表,教师作必要的指导;填完后抽学生的作业在视频展示台上展出,要求学生说一说自己是怎样用字母表示周长、面积和体积的计算公式的。
师:同学们已经会用字母表示周长、面积和体积的计算公式了。这些公式要求同学们要熟记,同学们能记住吗?
3.字母面积公式的初步应用
多媒体课件出示:张叔叔设计一个梯形的花台,这个花台的下底长10 m,上底长4 m,高6 m,这个花台占地多少平方米?
想一想,要求梯形的面积,用字母怎样表示?
S=(a+b)h÷2。
请同学们先写出这个字母公式,再算出这个花台的面积。
指导学生写成:S=(a+b)h÷2
=(10+4)×6÷2
=42(m2)
指导学生完成练习十七第3题,完成后集体订正。正方形的底面积=棱长×棱长,正方体的体积=棱长×棱长×棱长。
学生回答
正方体的底面积=棱长×棱长
↓↓
S=a×a
指导学生完成练习十七第2,7题,完成后抽一个学生的作业在视频展示台上展示,集体订正。
课堂小结略
课堂作业练习十七第1,4题。
练习设计
板书设计
教学反思
执教教师: 审核:
课题: 用字母表示数(四)
学校: 小学 主备教师: 教师
教学内容教科书第86页例5和“试一试”,练习十七第5,6,8题。
教学目标知识与能力使学生理解和掌握用字母表示常用的数量关系的方法
过程与方法进一步感受用字母表示数量关系的优越性。
情感、态度与价值观进一步培养学生的归纳概括能力和初步的逻辑思维能力,发展学生的应用意识。
教学重点
教学难点
教学准备教师准备多媒体课件和视频展示台。
导学策略
(教学思路)
教 学 过 程
教学环节教 师 活 动学 生 活 动批 注
复习引入填空。
良种西红柿每平方米可以摘xkg西红柿,一般的西红柿每平方米比良种西红柿每平方米要少收18kg。
x-18表示(),5x表示(),4(x-18)表示()。
如果x=50时,一般的西红柿每平方米可摘()千克西红柿。
我们在前面学习了用字母表示数和计算公式,这节课我们学习用字母表示常用的数量关系。(板书课题)学生完成后,抽学生的作业在视频展示台上展出,并要求学生说一说自己是怎样填的。
进行新课1.教学例5
哪些是常用的数量关系呢?我们先来看这样一个问题。
这是小小文具店一天的营业情况,这个统计表可以在你们教科书的第86页上找到,请同学们先用你们掌握的知识填好这个统计表。
我们注意这样一个问题,这个同学说的每个计算器的钱、每个笔记本的钱……在表中叫什么?叫单价。
有了这样一个常用的数量关系式,我们解决这类问题就比较容易了,比如老师告诉你今天的白菜每千克1.2元,买5kg白菜要多少元呢?
引导学生说出:在这道题中a=1.2,b=5,求m是多少可以这样解:
m=a×b=1.2×5=6(元)
2.拓展延伸,
引导学生说出一些常用的数量关系,比如“速度×时间=路程”、“工作效率×工作时间=工作总量”等。
如果用v表示速度,t表示时间,x表示路程,“速度×时间=路程”这个数量关系式怎样表达?
v×t=x。
能说一个用“速度×时间=路程”这个数量关系式解决的问题,并且用这个数量关系式把它解答出来吗?
如果用a表示工作效率,b表示工作时间,c表示工作总量,你又准备怎样表示“工作效率×工作时间=工作总量”这个数量关系式呢?:a×b=c。
自己编一个用这个关系式解决的题目,并且把它解答出来。学生独立填表后,抽一个学生的作业在视频展示台上展出,并要求学生说一说自己是怎样填这个统计表的。
引导学生说出这个学生解决这个问题的方法是“单价×数量=总价”。
那么这个同学求这些商品的总价时用了一种比较固定的方法,谁能把这种方法总结一下?
“单价×数量=总价”表现了销售商品过程中这三个数量的关系,而这个数量关系在我们买卖东西时经常用到,所以我们把这种数量关系叫做常用的数量关系。这种常用的数量关系也可以用字母来表示,比如我们用a表示单价,b表示数量,m表示总价,那么“单价×数量=总价”这个数量关系式可以怎样表示呢?
学生编题、解题略。
同桌学生说用“速度×时间=路程”解决的问题,并且解答出来,抽学生的作业在视频展示台上展出,要求学生说一说自己是怎样想的。
课堂小结这节课我们研究了一个什么内容?它和我们前面学习的内容有哪些相同?哪些不同?你在生活中用到过这样一些数量关系吗?在学习的过程中还遇到哪些问题?
课堂作业练习十七第5,6,8题。可以指导学有余力的学生完成第88页思考题。
练习设计
板书设计