汉语大全>高一数学教案>集合的含义与表示(二)

集合的含义与表示(二)

详细内容

§1 集合的含义与表示(二)

自主学习

1.掌握集合的表示方法,能在具体问题中选择适当的方法表示集合.
2.通过实例和阅读自学体会用列举法和描述法表示集合的方法和特点,培养自主探究意识和自学能力.

1.集合的常用表示法有列举法和描述法.
2.列举法:把集合中的元素一一列举出来写在大括号内的方法.
3.描述法:用确定的条件表示某些对象是否属于这个集合的方法.
4.不含有任何元素的集合叫做空集,记作∅.
5.集合的分类1有限集;2无限集;3空集.
对点讲练
用列举法表示集合

【例1】 用列举法表示下列集合:
(1)已知集合M=x∈N|61+x∈Z,求M;
(2)方程组x+y=2x-y=0的解集;
(3)由|a|a+b|b|(a,b∈R)所确定的实数集合.
点拨 解答本题可先弄清集合元素的性质特点,然后再按要求改写.
解 (1)∵x∈N,且61+x∈Z,∴1+x=1,2,3,6,
∴x=0,1,2,5,∴M={0,1,2,5}.
(2)由x+y=2x-y=0,得x=1y=1,
故方程组的解集为{(1,1)}.
(3)要分a>0且b>0,a>0且b<0,a<0且b>0,a<0且b<0四种情况考虑,故用列举法表示为{-2,0,2}.
规律方法 (1)列举法表示集合,元素不重复、不计次序、不遗漏,且元素与元素之间用“,”隔开.(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然.
变式迁移1 用列举法表示下列集合:
(1)A={x||x|≤2,x∈Z};
(2)B={x|(x-1)2(x-2)=0};
(3)M={(x,y)|x+y=4,x∈N*,y∈N*};
(4)已知集合C=61+x∈Z|x∈N,求C.
解 (1)∵|x|≤2,x∈Z,
∴-2≤x≤2,x∈Z,
∴x=-2,-1,0,1,2.
∴A={-2,-1,0,1,2}.
(2)∵1和2是方程(x-1)2(x-2)=0的根,
∴B={1,2}.
(3)∵x+y=4,x∈N*,y∈N*,
∴x=1,y=3,或x=2,y=2,或x=3,y=1.
∴M={(1,3),(2,2),(3,1)}.
(4)结合例1(1)知,61+x=6,3,2,1,
∴C={6,3,2,1}.

用描述法表示集合

【例2】 用描述法表示下列集合:
(1)所有正偶数组成的集合;
(2)方程x2+2=0的解的集合;
(3)不等式4x-6<5的解集;
(4)函数y=2x+3的图像上的点集.
解 (1)文字描述法:{x|x是正偶数}.
符号描述法:{x|x=2n,n∈N*}.
(2){x|x2+2=0,x∈R}.
(3){x|4x-6<5,x∈R}.
(4){(x,y)|y=2x+3,x∈R,y∈R}.
规律方法 用描述法表示集合时,要注意代表元素是什么?同时要注意代表元素所具有的性质.
变式迁移2 用描述法表示下列集合:
(1)函数y=ax2+bx+c (a≠0)的图像上所有点的集合;
(2)一次函数y=x+3与y=-2x+6的图像的交点组成的集合;
(3)不等式x-3>2的解集.
解 (1){(x,y)|y=ax2+bx+c,x∈R,a≠0}.
(2)x,y|y=x+3y=-2x+6=x,y|x=1y=4.
(3){x∈R|x-3>2}.

列举法和描述法的灵活运用

【例3】 用适当的方法表示下列集合:
(1)比5大3的数;
(2)方程x2+y2-4x+6y+13=0的解集;
(3)二次函数y=x2-10图像上的所有点组成的集合.
点拨 对于(1),比5大3的数就是8,宜用列举法;对于(2),方程为二元二次方程,可将方程左边因式分解后求解,宜用列举法;对于(3),所给二次函数图像上的点有无数个,宜采用描述法.
解 (1)比5大3的数显然是8,故可表示为{8}.
(2)方程x2+y2-4x+6y+13=0可化为
(x-2)2+(y+3)2=0,
∴x=2y=-3,∴方程的解集为{(2,-3)}.
(3)“二次函数y=x2-10的图像上的点”用描述法表示为{(x,y)|y=x2-10}.
规律方法 用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.
变式迁移3 用适当的方法表示下列集合:
(1)由所有小于10的既是奇数又是素数的自然数组成的集合;
(2)由所有周长等于10 cm的三角形组成的集合;
(3)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;
(4)二元二次方程组y=xy=x2的解集.
解 (1)列举法:{3,5,7}.
(2)描述法:{周长为10 cm的三角形}.
(3)列举法:{1,2,3,12,13,21,31,23,32,123,132,213,231,312,321}.
(4)列举法:{(0,0),(1,1)}.

1.在用列举法表示集合时应注意以下四点:
(1)元素间用“,”分隔;
(2)元素不重复;
(3)不考虑元素顺序;
4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,
必须把元素间的规律显示清楚后方能用省略号.
2.使用描述法时应注意以下四点:
(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号);
(2)说明该集合中元素的特征;
(3)不能出现未被说明的字母;
(4)用于描述的语句力求简明、确切.

课时作业

一、选择题
1.集合{1,3,5,7,9}用描述法表示应是(  )
A.{x|x是不大于9的非负奇数}
B.{x|x≤9,x∈N}
C.{x|1≤x≤9,x∈N}
D.{x|0≤x≤9,x∈Z}
答案 A
2.在直角坐标系内,坐标轴上的点的集合可表示为(  )
A.{(x,y)|x=0,y≠0}
B.{(x,y)|x≠0,y=0}
C.{(x,y)|xy=0}
D.{(x,y)|x=0,y=0}
答案 C
3.下列语句:
①0与{0}表示同一个集合;
②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};
③方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};
④集合{x|4正确的是(  )
A.只有①和④ B.只有②和③
C.只有② D.以上语句都不对
答案 C
4.已知集合A=a65-a∈N+,则A为(  )
A.{2,3} B.{1,2,3,4}
C.{1,2,3,6} D.{-1,2,3,4}
答案 D
解析 由65-a∈ 可知,5-a为6的正因数,所以5-a可以等于1,2,3,6,相应的a分别等于4,3,2,-1,即A={-1,2,3,4}.
5.下列集合中表示同一集合的是(  )
A.M={(3,2)},N={(2,3)}
B.M={3,2},N={2,3}
C.M={(x,y)|x+y=1},N={y|x+y=1}
D.M={1,2},N={(1,2)}
答案 B
二、填空题
6.下列可以作为方程组x+y=3x-y=-1的解集的是__________(填序号).
①{x=1,y=2}; ②{1,2};
③{(1,2)}; ④{(x,y)|x=1或y=2};
⑤{(x,y)|x=1且y=2};
⑥{(x,y)|(x-1)2+(y-2)2=0}.
答案 (3)(5)(6)
7.已知a∈Z,A={(x,y)|ax-y≤3}且(2,1)∈A,(1,-4) A,则满足条件的a的值为________.
答案 0,1,2
解析 ∵(2,1)∈A且(1,-4) A,
∴2a-1≤3且a+4>3,
∴-18.已知集合M={x∈N|8-x∈N},则M中的元素最多有________个.
答案 9
三、解答题
9.用另一种方法表示下列集合.
(1){绝对值不大于2的整数};
(2){能被3整除,且小于10的正数};
(3){x|x=|x|,x<5且x∈Z};
(4){(x,y)|x+y=6,x∈N*,y∈N*};
(5){-3,-1,1,3,5}.
解 (1){-2,-1,0,1,2}.
(2){3,6,9}.
(3)∵x=|x|,∴x≥0,又∵x∈Z且x<5,
∴x=0或1或2或3或4.
∴集合可以表示为{0,1,2,3,4}.
(4){(1,5),(2,4),(3,3),(4,2),(5,1)}.
(5){x|x=2k-1,-1≤k≤3,k∈Z}.
10.用描述法表示图中阴影部分(含边界)的点的坐标的集合.

解 用描述法表示为(即用符号语言表示):
x,y|-1≤x≤32,-12≤y≤1,且xy≥0.
探究驿站
11.对于a,b∈N+,现规定:
a*b=a+b a与b的奇偶性相同a×b a与b的奇偶性不同.
集合M={(a,b)|a*b=36,a,b∈N+}
(1)用列举法表示a,b奇偶性不同时的集合M;
(2)当a与b的奇偶性相同时集合M中共有多少个元素?
解 (1)当a,b奇偶性不同时,
a*b=a×b=36,
则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M可表示为:
M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.
(2)当a与b的奇偶性相同时a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,
所以当a,b奇偶性相同时这样的元素共有35个.