汉语大全>高二化学教案>带电粒子在磁场中运动轨迹2

带电粒子在磁场中运动轨迹2

详细内容

确定带电粒子在磁场中运动轨迹的方法


带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些题不但涉及洛伦兹力,而且往往与几何关系相联系,使问题难度加大,但无论这类题多么复杂,其关键一点在于画轨迹,只要确定了轨迹,问题便迎刃而解,下面举几种确定带电粒子运动轨迹的方法。
1. 对称法
带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

图1
例1. 如图1所示,在y小于0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B,一带正电的粒子以速度 从O点射入磁场,入射速度方向为xy平面内,与x轴正向的夹角为 ,若粒子射出磁场的位置与O点的距离为L,求该粒子电量与质量之比。
解析:根据带电粒子在有界磁场的对称性作出轨迹,如图2所示,找出圆心A,向x轴作垂线,垂足为H,由与几何关系得:

图2

带电粒子磁场中作圆周运动,由

解得 ②
①②联立解得

2. 动态圆法
在磁场中向垂直于磁场的各个方向发射粒子时,粒子的运动轨迹是围绕发射点旋转的动态圆,用这一规律可确定粒子的运动轨迹。
例2. 如图3所示,S为电子源,它在纸面360度范围内发射速度大小为 ,质量为m,电量为q的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为 ,求挡板被电子击中的范围为多大?

图3
解析:由于粒子从同一点向各个方向发射,粒子的轨迹构成绕S点旋转的一动态圆,动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图4所示,最高点为动态圆与MN的相切时的交点,最低点为动态圆与MN相割,且SB为直径时B为最低点,带电粒子在磁场中作圆周运动,由 得

图4

SB为直径,则 由几何关系得

A为切点,所以OA=L
所以粒子能击中的范围为 。

3. 放缩法
带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,探索出临界点的轨迹,使问题得解。
例3. 如图5所示,匀强磁场中磁感应强度为B,宽度为d,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为 ,已知电子的质量为m,电量为e,要使电子能从轨道的另一侧射出,求电子速度大小的范围。

图5
解析:如图6所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,设此时的速率为 ,带电粒子在磁场中作圆周运动,由几何关系得

图6

电子在磁场中运动时洛伦兹力提供向心力
,所以 ②
①②联立解得 所以电子从另一侧射出的条件是速度大于 。

4. 临界法
临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。
例4. 长为L的水平极板间,有垂直纸面向内的匀强磁场,如图7所示,磁感应强度为B,板间距离也为L,两极板不带电,现有质量为m电量为q的带负电粒子(不计重力)从左边极板间中点处垂直磁感线以水平速度v射入磁场,欲使粒子打到极板上,求初速度的范围。

图7
解析:由左手定则判定受力向下,所以向下偏转,恰好打到下板右边界和左边界为两个临界状态,分别作出两个状态的轨迹图,如图8、图9所示,打到右边界时,在直角三角形OAB中,由几何关系得:

图8图9

解得轨道半径
电子在磁场中运动时洛伦兹力提供向心力
因此
打在左侧边界时,如图9所示,由几何关系得轨迹半径
电子在磁场中运动时洛伦兹力提供向心力,
所以
所以打在板上时速度的范围为
以上是确定带电粒子在磁场中运动轨迹的四种方法,在解题中如果善于抓住这几点,可以使问题轻松得解。