汉语大全>初中一年级作文>初一几何证明题平分线平行线直角

初一几何证明题平分线平行线直角

详细内容

篇一:《初一第5章几何证明专题训练卷(平行线性质)(教师版)》

参考答案与试题解析

一.解答题(共30小题)

1.看图填空,并在括号内加注明理由.

(1)如图,

①∵∠B=∠C(已知)

∴AB∥CD(内错角相等,两直线平行);

②∵AE∥DF(已知)

∴∠1=∠2(两直线平行内错角相等).

(2)如图;

①∵∠A=(已知)

∴AB∥CE(内错角相等,两直线平行);

②∵∠B=(已知)

∴AB∥CE(同位角相等,两直线平行).

2.已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.AD与BE平行吗?为什么?解:AD∥BE,理由如下:

∵AB∥CD(已知)

∴∠4=∠BAE(两直线平行,同位角相等)

∵∠3=∠4(已知)

∴∠3=∠BAE(等量代换)

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(等量代换)

即∠BAF=∠DAC

∴∠3=∠DAC(等量代换)

∴AD∥BE(内错角相等,两直线平行)

3.填空或填写理由.

如图,直线a∥b,∠3=125°,求∠1、∠2的度数.

解:∵a∥b(已知),∴∠1=∠4(两直线平行,同位角相等).

∵∠4=∠3(对顶角相等),∠3=125°(已知)

∴∠1=

(125)度(等量代换).

又∵∠2+∠3=180°,

∴∠2=(55)度(等式的性质).

4.如图,已知AB∥CD,求证:∠B+∠D=∠BED,试完成下列的证明过程.

证明:过E点作EF∥AB(已作)

∴∠1=∠B(两直线平行,内错角相等)

又∵AB∥CD(已知)

∴EF∥CD(平行的传递性)

∴∠2=∠D

∴∠B+∠D=∠1+∠2

∴∠BED=∠B+∠D(等量代换)

5.阅读下面的证明过程,指出其错误.

已知△ABC.

求证:∠A+∠B+∠C=180度.

证明:过A作DE∥BC,且使∠1=∠C

∵DE∥BC(画图)

∴∠2=∠B(两直线平行,内错角相等)

∵∠1=∠C

(画图)

∴∠B+∠C+∠3=∠2+∠1+∠3=180°

即∠BAC+∠B+∠C=180°.

6.已知:如图,AC平分∠DAB,∠1=∠2,填定下列空白:

∵AC平分∠DAB(已知)

∴∠1=∠CAB(角平分线的定义)

∵∠1=∠2

∴∠2=∠CAB(等量代换)

∴AB∥CD(内错角相等,两直线平行)

7.请把下列证明过程补充完整:

已知:如图,DE∥BC,BE平分∠ABC.求证:∠1=∠3.

证明:因为BE平分∠ABC(已知),

所以∠1=

∠2(角平分线性质).

又因为DE∥BC(已知),

所以∠2=∠3(两直线平行,同位角相等).

所以∠1=∠3(等量代换).

8.如图,在△ABC中,CD平分∠ACB,DE∥BC,DE=3cm,AE=2.5cm.求AC.

解:∵CD平分∠ACB

∴∠3=∠2

∵DE∥BC

∴∠3=∠1(两直线平行,内错角相等)

∴∠1=∠2

∴DE=EC(等角对等边)

∵DE=3cm,AE=2.5cm

∴AC=AE+EC=AE+DE=2.5+3=5.5cm.

9.已知直线l1∥l2,直线l3与直线l1、l2分别交于C、D两点.

(1)如图①,有一动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具∠3+∠1=∠2这一相等关系?试说明理由;

(2)如图②,当动点P在线段CD之外运动(不与C、D两点重合),问上述结论是否还成立?若不成立,试写出新的结论并说明理由.

篇二:《平行线与相交线几何证明题专项训练》

平行线与相交线几何证明题专项训练

1、如图,

(1)∵∠1=∠A(已知),∴∥,();(2)∵∠3=∠4(已知),∴∥,()(3)∵∠2=∠5(已知),∴∥,();(4)∵∠ADC+∠C=180º(已知),∴∥,()

.

②∵∠3=∠4(已知),

∴____________∥____________()③∵∠FAD=∠FBC(已知),

∴_____________∥____________()4、如图,直线AB,CD,EF被直线GH所截,∠1=70,∠2=110,∠3=70.求证:AB//CD.

3题图

1题图

2题图

2、如图,

(1)∵∠ABD=∠BDC(已知),

∴∥,((2)∵∠DBC=∠ADB(已知),

∴∥,((3)∵∠CBE=∠DCB(已知),

∴∥,((4)∵∠CBE=∠A,(已知),∴∥,((5)∵∠A+∠ADC=180º(已知),∴∥,((6)∵∠A+∠ABC=180º(已知),∴∥,(3、如图,

①∵AB//CD(已知),

∴∠ABC=__________(∠BCD+____________=180(____________=______________(两直线平行,内错角相等),

证明:∵∠1=70,∠3=70(已知),

∴∠1=∠3()∴________∥_________()∵∠2=110,∠3=70(),∴_____________+__________=______________,

∴_____________//______________,

∴AB//CD().

;;;4题图

5题图

;5.如图,①直线DE,AC被第三条直线BA所截,

.则∠1和∠2是________,如果∠1=∠2,则_____________//_____________,

其理由是().②∠3和∠4是直线__________、__________,

)被直线____________所截,因此若____________//____________则∠3_________∠4,)其理由是().

1

))))))

6.如图,已知AB//CD,BE平分∠ABC,CE平分∠BCD,求证∠1+∠2=90.

证明:∵BE平分∠ABC(已知),∴∠2=_________()同理∠1=_______________,∴∠1+∠2=

9、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.

解:∠B+∠E=∠BCE过点C作CF∥AB,

则B____()又∵AB∥DE,AB∥CF,

∴____________()1

____________()2

又∵AB//CD(已知),

∴∠ABC+∠BCD=__________________()∴∠1+∠2=90

(7、如图2-60,E、F、G分别是AB、AC、BC上一点.

①如果∠B=∠FGC,则_______//______,其理由是(②∠BEG=∠EGF,则__________//_______,其理由是(③如果∠AEG+∠EAF=180,则________//_______,其理由是(6题图

7题图

8题图

8.如图2-61,已知AB//CF,AB//DE,求证:∠B+∠D=∠BCF+∠DCF.

证明:∵AB//CF(已知),

∴∠______=∠________(两直线平行,内错角相等).{初一几何证明题平分线平行线直角}.

∵AB//CF,AB//DE(已知),∴CF//DE(∴∠_________=∠_________(∴∠B+∠D=∠BCF+∠DCF(等式性质).

∴∠E=∠____()∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.

)))

9题图

10题图

10、阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.

证明:∵AB∥CD,

∴∠MEB=∠MFD()又∵∠1=∠2,

∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______

)∴EP∥_____.())

篇三:《初一几何证明题答案》

初一几何证明题答案图片发不上来,看参考资料里的

1如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求证:AC=EF。

2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD

(1)求证:△BCE全等△DCF

3.

如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.

4.

已知,如图,PB、PC分别是△ABC的外角平分线,且相交于点P。

求证:点P在∠A的平分线上。

回答人的补充2010-07-1900:101.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC角ACB,试猜想,AC、AE、CD有怎么样的数量关系

2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍

求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。(这条线叫欧拉线)求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~(这个圆叫九点圆)

3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加1

4.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

5.设所求直线为y=kx+b(k,b为常数.k不等于0).则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1(1)过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2(2).直线(2)与直线(1)的交点为A,直线(2)与直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.

6.在三角形ABC中,角ABC=60,点P是三角ABC内的一点,使得角APB=角BPC=角CPA,且PA=8PC=6则PB=2P是矩形ABCD内一点,PA=3PB=4PC=5则PD=3三角形ABC是等腰直角三角形,角C=90O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1两三角形的公共部分为多边形KLMNPQ,1)证明:三角形AKL三角形BMN三角形CPQ都是等腰直角三角形2)求三角形ABC与三角形A1B1C1公共部分的面积。

已知三角形ABC,a,b,c分别为三边.求证:三角形三边的平方和大于等于16倍的根号3(即:a2+b2+c2大于等于16倍的根号3)

初一几何单元练习题

一.选择题

1.如果α和β是同旁内角,且α=55°,则β等于()

(A)55°(B)125°(C)55°或125°(D)无法确定

2.如图19-2-(2)

AB‖CD若∠2是∠1的2倍,则∠2等于()

(A)60°(B)90°(C)120°(D)150

3.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠4度数()

(A)等于∠1(B)110°

(C)70°(D)不能确定{初一几何证明题平分线平行线直角}.

4.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠1的度数是()

(A)70°(B)110°

(C)180°-∠2(D)以上都不对

5.如图19-2(5),

已知∠1=∠2,若要使∠3=∠4,则需()

(A)∠1=∠2(B)∠2=∠3

(C)∠1=∠4(D)AB‖CD

6.如图19-2-(6),

AB‖CD,∠1=∠B,∠2=∠D,则∠BED为()

(A)锐角(B)直角

(C)钝角(D)无法确定

7.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()

(A)相等(B)互补(C)相等且互补(D)相等或互补

8.如图19-2-(8)AB‖CD,∠α=()

(A)50°(B)80°(C)85°

答案:1.D2.C3.C4.C5.D6.B7.D8.B

初一几何第二学期期末试题