汉语大全>数控论文>数控全自动磨床砂轮平衡装置的研究

数控全自动磨床砂轮平衡装置的研究

详细内容

1 概述

在磨削加工过程中,砂轮的振动是产生工件已加工表面振纹、影响加工质量的重要因素。引起这种振动的原因有工件和刀具传动系统的扰动以及砂轮不平衡引起的主轴振动两个方面。前者一般可以通过磨床的减振设备有效地消除,而后者则主要通过对砂轮进行平衡校正来解决。砂轮的平衡技术按自动化程度可分为人工平衡、半自动平衡和自动平衡3类。目前人们在研究半自动平衡的同时正致力于自动平衡的研究。日本开发的一种Balanceeye/norilake半自动平衡装置,通过振动测试分析,指出平衡块的安放位置,停机后人工稳定平衡配重块,再开车进行平衡测定。它基本代表了半自动平衡的水平。在自动平衡中,机械式增重平衡器是发展最早、应用最广的一类。自动平衡目前在国外已发展为液体平衡(日本)和利用氟里昂作为平衡介质的液汽平衡(美国)。本文研究的是一种利用增重平衡原理,根据振幅大小的变化规律,通过调整配重相对位置实现砂轮动态平衡校正的方法和装置。2 平衡原理和平衡头结构

    平衡原理 平衡装置简图如图1所示,磨床砂轮属于刚性转子。刚性转子由于其质心与回转中心不重合所引起的振动响应即旋转失衡是磨床主轴振动的重要因素。若磨床主轴部件总质量为M,不平衡质量为m,等效不平衡质点与回转中心的距离(偏心距)为e,则由此引起的稳态受迫振动的振幅为 ,即
    图2 偏心质量及补偿质量惯性力系
    图4 砂轮和偏重齿圈的配置 可见,用两个给定偏心质量和偏心距的偏重齿圈来补偿砂轮的不平衡质量可以通过调整其与砂轮的周向相对位置来实现,补偿能力为0~2mbeb。 平衡头结构 平衡头的核心是两个偏重齿圈,其结构如图3所示。它是用塑料圆盘沿周向均匀开若干个大小相同的孔,而在某些相邻的孔中嵌入铅柱构成的。若每个铅柱的质径积为m1e1,相邻两个铅柱的向径夹角为a1,则k个相邻铅柱的等效质径积为
    图5 信号调理电路
    图7 采样电路原理图
    图9 人机接口电路 4 软件结构 软件结构由键盘显示管理软件、采样比较软件、电机控制软件和主程序等组成。 5 结论 该平衡装置在某外圆磨床上实验结果如图10所示。由图可见平衡后的振动大约是平衡前的1/8左右,振动显著降低,平衡效果良好。
    图10 平衡前后振动比较 砂轮和偏重齿圈的配置如图4所示,两个偏重齿圈分别由两台微电机通过蜗轮蜗杆机构驱动而相对于砂轮转向。微电机的动作信号来源于控制系统的控制电路。