汉语大全>高三物理教案>2011届高考物理知识点速查复习万有引力定律天体运动

2011届高考物理知识点速查复习万有引力定律天体运动

详细内容

万有引力定律天体运动
一、万有引力定律
(1)开普勒三定律
①所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
②对每个行星而言太阳和行星的连线在相等的时间内扫过相同的面积
③所有行星轨道的半长轴R的三次方与公转周期T的二次方的比值都相同,即 ,常用开普勒三定律来分析行星在近日点和远日点运动速率的大小。
(2)万有引力定律:○1自然界的一切物体都相互吸引,两个物体间的引力的大小,跟它们的质量乘积成正比,跟它们的距离的平方成反比。○2公式: ,
G=6.67×10-11N.m2/kg2.○3适用条件:适用于相距很远,可以看做质点的两物体间的相互作用,质量分布均匀的球体也可用此公式计算,其中r指球心间的距离。
(3)三种宇宙速度:
○1第一宇宙速度V1=7.9Km/s,人造卫星的最小发射速度;
○2第二宇宙速度V2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度;(3)第三宇宙速度V3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度。
注意:①V1=7.9Km/s是最小的发射速度,但是是最大的运行速度。当V1=7.9Km/s时,卫星近表面运行,V运=7.9Km/s。
②当7.9Km/s二、万有引力定律的应用:
1、开普勒三定律应用
所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等,这就是开普勒第三定律,也叫周期定律.我们把行星的椭圆轨道近似地当作圆,若用r代表轨道半径,T代表公转周期,则开普勒第三定律的表达式为r3/T2=k.
因用周期T表示,则把 代入基本方程 即得:
显然这个量k只与恒星的质量M有关,而与行星其他任何物理量均无关。
2、各物理量与轨道半径的关系
若已知人造卫星绕地心做匀速率圆周运动的轨道半径为 r,地球的质量为M。
由 得卫星运行的向心加速度为
由 得卫星运行的线速度为:
由 得卫星运行的角速度为:
由 得卫星运行的周期为:
由 得卫星运行的动能:
即随着运行的轨道半径的逐渐增大,向心加速度an、线速度v、角速度ω、动能Ek将逐渐减小,周期T将逐渐增大.
3、会讨论重力加速度g随离地面高度h的变化情况。
4、会用万有引力定律求天体的质量。
通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。
以地球的质量的计算为例
(1)若已知月球绕地球做匀速圆周运动的周期T和半径r,根据:
得:
(2)若已知月球绕地球做匀速圆周运动的线速度v和半径r
根据: 得:
(3)若已知月球绕地球做匀速圆周运动的线速度v和周期T
根据: 和 得:
(4)若已知地球的半径R和地球表面的重力加速度g
得: ――此式通常被称为黄金代换式。
5、会用万有引力定律计算天体的平均密度。
通过观测天体表面运动卫星的周期T,,就可以求出天体的密度ρ。
6、会用万有引力定律求卫星的高度。
通过观测卫星的周期T和行星表面的重力加速度g及行星的半径R可以求出卫星的高度。
7、会用万有引力定律推导恒量关系式。
8、会求解卫星运动与光学问题的综合题
9、二个特殊卫星
(1)通讯卫星(同步卫星)
通讯卫星是用来通讯的卫星,相当于在太空中的微波中继站,通过它转发和反射无线电信号,可以实现全地球的电视转播.这种卫星位于赤道的上空,相对于地面静止不动,犹如悬在空中一样,也叫同步卫星.
要使卫星相对于地面静止,卫星运动的周期与地球自转的周期必须相等(即为24小时);卫星绕地球的运动方向与地球自转方向必须相同,即卫星的轨道平面与地轴垂直;又因为卫星所需的向心力来自地球对它的引力,方向指向地心,因此同步卫星的轨道平面必须通过地心,即与赤道平面重合。.
因已知T,将 代入基本方程 得:
若已知地球的半径R地=6.4×106m,地球的质量M=6.0×1024kg,用h表示卫星离地的高度,则R地+h= r =4.2×107m,即h=3.6×107m.所有的同步卫星均在赤道的上空离地为3.6×107m的高处的同一轨道上以相同的速率运行,当然同步卫星间绝不会相撞.
(2) 近地卫星
把在地球表面附近环绕地球做匀速率圆周运动的卫星称之为近地卫星,它运行的轨道半径可以认为等于地球的半径R0,其轨道平面通过地心.若已知地球表面的重力加速度为g0,则
由 得:
由 得:
由 得:
若将地球半径R0=6.4×106m和g0=9.8m/s2代入上式,可得v=7.9×103m/s,ω=1.24×10-3 rad/s,T=5074s,由于 , 和 且卫星运行的轨道半径 r>R0,所以所有绕地球做匀速率圆周运动的卫星线速度v<7.9×103m/s,角速度ω<1.24×10-3rad/s,而周期 T> 5074s。
特别需要指出的是,静止在地球表面上的物体,尽管地球对物体的重量也为mg,尽管物体随地球自转也一起转,绕地轴做匀速率圆周运动,且运行周期等于地球自转周期,与近地卫星、同步卫星有相似之处,但它的轨道平面不一定通过地心,如图2所示.只有当纬度θ=0°,即物体在赤道上时,轨道平面才能过地心.地球对物体的引力F的一个分力是使物体做匀速率圆周运动所需的向心力f=mω2r,另一个分力才是物体的重量mg,即引力F不等于物体的重量mg,只有当r=0时,即物体在两极处,由于f=mω2r=0,F才等于mg.。
10、人造卫星失重问题
11、卫星的变轨运动问题
卫星由低轨道运动到高轨道,要加速,加速后作离心运动,势能增大,动能减少,到高轨道作圆周运动时速度小于低轨道上的速度。
当以第一宇宙速度发射人造卫星,它将围绕地球表面做匀速圆周运动;若它发射的速度介于第一宇宙速度与第二宇宙速度之间,则它将围绕地球做椭圆运动.有时为了让卫星绕地球做圆周运动,要在卫星发射后做椭圆运动的过程中二次点火,以达到预定的圆轨道.设第一宇宙速度为v,则由第一宇宙速度的推导过程有G =m .在地球表面若卫星发射的速度v1>v,则此时卫星受地球的万有引力 应小于卫星以v1绕地表做圆周运动所需的向心力m ,故从此时开始卫星将做离心运动,在卫星离地心越来越远的同时,其速率也要不断减小,在其椭圆轨道的远地点处(离地心距离为R′),速率为v2(v2<v1),此时由于G >m ,卫星从此时起做向心运动,同时速率增大,从而绕地球沿椭圆轨道做周期性的运动.如果在卫星经过远地点处开动发动机使其速率突然增加到v3,使G =m ,则卫星就可以以速率v3,以R′为半径绕地球做匀速圆周运动.同样的道理,在卫星回收时,选择恰当的时机使做圆周运动的卫星速率突然减小,卫星将会沿椭圆轨道做向心运动,让该椭圆与预定回收地点相切或相交,就能成功地回收卫星.
通过以上讨论可知:卫星在某一圆轨道上做匀速圆周运动时,其速率为一确定值,若卫星突然加速(或减速),则卫星会做离心(或向心)运动而离开原来的轨道,有人提过这样的问题:飞船看见前方不远处有一和它在同一轨道上同向做圆周运动的卫星,此时若仅使它速度增大,能否追上卫星?若飞船加速,则它会离开原来的圆轨道,所以不能追上.它只有在较低的轨道上加速或在较高的轨道上减速,才有可能遇上卫星.
四、万有引力问题全解
1.人造地球卫星的轨道是任意的吗?
在地球上空绕地球运行的人造地球卫星所受的力是地球对它的万有引力,卫星即可绕地球做圆周运动,也可绕地球做椭圆运动.在中学阶段我们主要研究绕地球做匀速圆周运动的卫星.
卫星绕地球做匀速圆周运动时靠地球对它的万有引力充当向心力,地球对卫星的万有引力指向地心.而做匀速圆周运动物体的向心力时刻指向它做圆周运动的圆心.因此卫星绕地球做匀速圆周运动的圆心必与地心重合.而这样的轨道有多种,其中比较特殊的有与赤道共面的赤道轨道和通过两极点上空的极地轨道,当然也应存在着与赤道平面成某一角度的圆轨道,只要圆心在地心,就可能是卫星绕地球运行的圆轨道.如图6-5-2.
2.人造卫星的运行周期可以小于80 min吗?
(1)从卫星的周期讨论
设人造地球卫星的质量为m,运转周期为T,轨道半径为r,地球的质量为M,万有引力常量为G,根据卫星绕地球转动的向心力就是地球对它的引力,有
m =G ,可得T=
由周期公式可以看出:卫星轨道半径r越小,周期也越小,当卫星沿地球表面附近运动时,即r=R地=6.4×106 m,周期最短,此时
T= ≈5.1×103 s=85 min.
显然,T大于80 min,所以想发射一周期小于80 min的卫星是不可能的.
(2)从卫星运动的轨道半径讨论
假设卫星的周期为80 min,则轨道半径r3=
r3= = ≈2.3×1020 m3
得出  r≈6.2×106 m<R地
显然不能发射一颗这样的卫星.
(3)从地球提供的向心力讨论
地球对卫星所能提供的向心力为:F=G
T=80 min时卫星所需的向心力为:F′=
当r=R地=6.4×106 m时
F= N≈9.8 mN,
F′= = N≈10.96mN.
当r=R地时,地球对卫星所能提供的向心力最大, ≤9.8mN,又由上分析可知 ,因此,要发射一颗周期为80 min的卫星是不可能的.
(4)从卫星的环绕速度讨论
设卫星绕地球运转的环绕速度为v,则有G = 得出:v=
由公式可知:r越小环绕速度越大,当r=R地=6.4×106 m时,卫星环绕地球的速度最大.
vmax= = ≈7.9×103 m/s
若地球卫星的周期为80 min,则其绕地球的线速度为
v= = ≈8.4×103 m/s
由此可见,v>vmax,显然不可能发射一颗周期为80 min的地球卫星.
3.卫星的发射速度和运行速度是一回事吗?
卫星的发射速度是指在地面(发射站)提供给它的速度.上面所说的第一宇宙速度、第二宇宙速度和第三宇宙速度都指的是发射速度.当卫星在预定轨道上绕地球做匀速圆周运动时的速度称为运行速度,只有以第一宇宙速度发射的人造卫星绕地球表面运行时,运行速度与发射速度相等,而对于在离地较高的轨道上运行的卫星,其运行时的速度与地面发射速度并不相等,因而到达预定轨道后其运行速度要比地面发射速度小.实际上按照万有引力充当向心力,则由G =m ,得v= 可知:卫星绕地球的运行速率仅由其轨道半径来决定,轨道半径越大即离地越高,其运行速度越小,但我们又知道要想将卫星发射到更高的轨道,在地面发射时需要提供给卫星的速度越大,这与在越高轨道上运行速度越小并不矛盾,因为其中一个指运行速度,一个指发射速度.由于卫星绕地球可能的圆轨道中半径最小值为地球半径R,因此由v= 得到的近地卫星的环绕速度也就是第一宇宙速度,是所有绕地球做匀速圆周运动的卫星的最大运行速度.因此,关于第一宇宙速度有三种不同说法:第一宇宙速度是发射人造地球卫星的最小发射速度,是环绕地球表面的近地卫星的环绕速度,是地球卫星的最大运行速度.
4.赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星有什么区别?
在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且二者做匀速圆周运动的半径均可看作地球的半径R,因此,有些同学就把二者混为一谈,实际上二者有着非常显著的区别.
①对它们做圆周运动的向心力的分析
前面已经有过讨论,地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一个分力是我们通常所说的物体所受的重力.对于赤道上的物体,万有引力、重力、向心力在一直线上时,重力大小等于万有引力和物体随地球自转做匀速圆周运动所需的向心力之差,它的向心力远小于地球对它的万有引力,而围绕地球表面做匀速圆周运动的卫星,由于离开了地球,它做圆周运动时万有引力全部充当向心力.
②对它做圆周运动的运动学特征的分析
赤道上的物体随地球自转做匀速圆周运动时,由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24 h,当然也可由此计算出其线速度和角速度.而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度.它的周期可以由公式求出:G =m R,求得T=2π ,代入地球的半径R与质量,可求出地球近地卫星绕地球的运行周期T约为84 min,此值远小于地球自转周期.
综上所述,赤道上随地球自转而做圆周运动的物体与近地卫星的区别可以概括为:①赤道上物体受的万有引力只有一小部分充当向心力,另一部分作为重力使得物体紧压地面,而近地卫星的引力全部充当向心力,卫星已脱离地球;②赤道上(地球上)的物体与地球保持相对静止,而近地卫星相对于地球而言处于高速旋转状态.
5.同步卫星
到目前为止,世界各国已成功发射了许多颗人造地球卫星,并在各个领域中都发挥着巨大的作用.在这些卫星当中,有一类特殊的卫星,即人造地球同步卫星,所谓地球的同步卫星就是相对于地球静止的卫星.该卫星始终处在地球表面某一点的正上方,其轨道通常称为地球静止轨道,人造地球同步卫星在无线通讯中起着无可替代的重要作用.
如图6-5-4所示,假设卫星在轨道B上跟着地球的自转同步地做匀速圆周运动,卫星运动的向心力由地球对它的引力F引的一个分力F1提供,由于另一分力F2的作用将使卫星轨道靠向赤道,故只有在赤道上空同步卫星才可能在稳定的轨道上运行.

图6-5-4
由G =mω2(R+h)=m( )2(R+h)得
h= -R(T为地球自转周期,M、R分别为地球质量、半径)
代入数值得h=3.6×107 m
由此可知:要发射地球同步卫星,必须同时满足三个条件:
①卫星运动周期和地球自转周期相同(T=24 h=8.64×104 s).
②卫星的运行轨道在地球的赤道平面内.
③卫星距地面高度有确定值(约3.6×107 m)
同步卫星的发射简介
发射同步卫星有两种方法:一种是直线发射,由运载火箭把卫星发射到36000 km的赤道上空,然后做90°的转折飞行,使卫星进入轨道;另一种方法是变轨发射,即先把卫星发射到高度为200~300 km的圆形轨道上,这条轨道叫停泊轨道,当卫星穿过赤道平面时,末级火箭点火工作,使卫星进入一条大的椭圆轨道,其远地点恰好在赤道上空3600 km处,这条轨道叫转移轨道.当卫星到达远地点时,再开动卫星上的发动机,使之进入同步轨道,也叫静止轨道.在第一种发射方法的整个发射过程中,运载火箭在入轨前始终处于动力飞行状态,要消耗大量燃料,还必须在赤道上建立发射场,有一定的局限性.第二种发射方法,运载火箭消耗的燃料少,发射场的位置也不受限制.目前,各国发射同步卫星都采用第二种方法,但这种方法在操作和控制上都比较复杂.
由于地球的同步卫星的运转周期是一定值,因此,各国所发射的地球同步卫星都只能定点于赤道上空约3.6×104 km处,它们的线速度、角速度也一样大,但各国的同步卫星定点于不同径度点的上方(我国于1984年4月8日成功发射的一颗地球的同步卫星,8天后定位于东经125°的赤道上空,我国是少数几个能独立发射同步卫星的国家之一).
6.人造卫星简介
晴朗的夜空,当你抬头仰望满天星斗时, 有时会看到一种移动的星星,它像天幕上的神行太保匆匆奔忙,它们是什么星?在忙些什么?
这种奇特的星星并不是宇宙间的星球,而是人类挂上天宇的明灯――人造地球卫星,它们巡天遨游,穿梭往来,忠实地为人类服务,给冷寂的宇宙增添了生气和活力.
人造卫星是个兴旺的家族.如果按用途分,它可分为三大类:科学卫星、技术试验卫星和应用卫星,科学卫星是用于科学探测和研究的卫星,主要包括空间物理探测卫星和天文卫星,用来研究高层大气、地球辐射带、地球磁层、宇宙线、太阳辐射等,并可以观测其他星体.技术试验卫星是进行新技术试验或为应用卫星进行试验的卫星.航天技术中有很多新原理、新材料、新仪器,其能否使用,必须在天上进行试验.一种新卫星的性能如何,也只有把它发射到天上去实际“锻炼”,试验成功后才能应用.人上天之前必须先进行动物试验……这些都是技术试验卫星的使命.应用卫星是直接为人类服务的卫星,它的种类最多,数量最大,其中包括通信卫星、气象卫星、侦察卫星、导航卫星、测地卫星、地球资源卫星、截击卫星等等.人造卫星的运行轨道(除近地轨道外)通常有三种:地球同步轨道、太阳同步轨道、极地轨道.地球同步轨道是运行周期与地球自转周期相同的顺行轨道.但其中有一种十分特殊的轨道,叫地球静止轨道.这种轨道的倾角为零,在地球赤道上空35786 km.在地面上的人看来,在这条轨道上运行的卫星是静止不动的.一般通信卫星、广播卫星、气象卫星选用这种轨道比较有利.地球同步轨道有无数条,而地球静止轨道只有一条.太阳同步轨道是轨道平面绕地球自转轴旋转的,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度(360度/年)的轨道,它距地球的高度不超过6000 km,在这条轨道上运行的卫星以相同的方向经过同一纬度的当地时间是相同的.气象卫星、地球资源卫星一般采用这种轨道.极地轨道是倾角为90°的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个地球表面.气象卫星、地球资源卫星、侦察卫星常采用此轨道.人造卫星通用系统有结构温度控制、姿态控制、能源、跟踪、遥测、遥控、通信、轨道控制、天线等系统,返回式卫星还有回收系统,此外还有根据任务需要而设的各种专用系统.