汉语大全>模具技术>CAE技术在注射模冷却系统中的应用(二)

CAE技术在注射模冷却系统中的应用(二)

详细内容

2.2冷却分析
冷却分析是用来分析模具内的热传递,主要包含塑件和模具的温度、冷却时间等。决定冷却系统性能优劣的因素如下:树脂熔体对模具的热传导速率;整个模具中从塑料熔体/金属界面到金属/冷却剂界面的热传导速率;从金属/冷却剂界面到冷却剂的传导速率。即热传递性能决定了冷却系统的性能,其中影响塑料熔体到模具壁的热传递速率的因素有:熔体的材料性能,如比热、热传导能力;熔体与模壁之间的温度梯度;熔体和模具之间的接触性能。
MPI/Cool通过对模具、制品、冷却系统的传热分析,为用户提供了丰富的模拟分析结果:
(1)冷却时间。为保证制品在脱模时有足够的强度,以防止脱模后发生变形,要确定合适的冷却时间;MPI/cool能够计算制品完全固化或用户设定的固化百分比所需要的冷却时间。
(2)型腔表面的温度分布。型腔表面温度对制品质量具有重要影响。MPI/Cool能够模拟注射周期的型腔表面温度分布,帮助工艺人员确定模具温度的均匀程度及是否达到材料所要求的模具温度。对于中性面模型,MPI/Cool还可以计算制品两个侧面的温度落差。
(3)制品厚度方向的温度分布。制品在顶出时刻的温度是确定冷却时间是否合理的重要因素。如果温度过高,则需加强冷却或适当延长冷却时间;而温度过低,说明冷却时间太长。MPI/Cool能够预测制品在顶出时刻沿厚度方向不同位置的温度分布,最高温度在厚度方向的位置,沿厚度方向的平均温度以及某一单元温度沿厚度方向的变化。
(4)制品的固化时间。依据模具表面的温度预测制品完全固化所需要的时间。
(5)冷却介质的温度分布及冷却管道表面的温度分布。冷却介质的温度变化、冷却管道表面与冷却介质间的温度差是决定冷却是否有效的重要依据。
图1是第一次冷却模拟分析的部分结果。其中(a)显示了制件的表面温度分布状态;图(b)显示了制件的表面温度分布状态;图(c)显示了制件固化所需的总时间;图(d)显示了冷却管分布状态――即冷却剂的温度。


图1 冷却模拟分析结果

3 冷却模拟分析结果及其改进的结果
根据上面的模拟分析结果,如图1中(a)所示,可以看出冷却管道并没有实现期待的冷却效果,仅在冷却管道的周围区域冷却效果比较理想,其余的区域温度比较高,并且在模型个别的边角温度过高.所以预置的冷却管的参数及其布局对其进行冷却的效果不理想。从图1中的(b)图可以看出制件的平均温度的结果略好于制件表面温度结果。但是同样反映出了冷却力度不够的缺陷;从图1的(d)图中可以看出冷却剂的入口与出口温度的落差差达到了6℃,说明冷却管道不能满足制件冷却需要,冷却系统的冷却能力有待提高。
根据初步分析结果对冷却管道的数目和布局进行了修改。通过多次类似的反复分析、比较、修改之后:冷却管道的数目由第一次的3个管道增加为9个。在温度较高的区域增加了冷却管道,并优化了管道布局。同时,将冷却管道的直径由原来的10mm增大到12mm,冷却剂的人口温度从原来的25℃降低到23℃。修改后的设置,见图2所示,再进行MPI/Cool的流程模拟分析。改进后的结果达到了预期的效果,如图2所示。其中,图(a)显示制件的表面温度有所改善,图(d)显示冷却剂的入口与出口温度的落差差异有所减小。


图2 改进后冷却模拟分析的结果

4 结论
本文通过实例具体模拟分析了影响注射成型冷却系统的各种因素,并根据动态模拟分析的各种结果提出了相应的改进方案。结果表明:优化后的注射模的冷却系统达到了预期的冷却效果,同时缩短了模具的设计周期并给合作厂家带来了明显的经济效益。