一种经济型精密快速原型制造技术
详细内容
1 前言目前研究比较成熟的快速原型制造技术(RP)主要有:立体平板印刷(SLA)、三维打印(3D-Printing)、叠层制造(LOM)、选择性激光烧结(SLS)、融熔堆积法(FDM)。就已有的各种RP 技术来看,在工程实用中有一些急需研究完善的问题:
- 精度和分辨率限制在0.1mm 以上。激光切割时因加热熔化造成的边缘热损伤和毛刺使得成形零件的轮廓精度和表面粗糙度较差,为了改善这种情况,需要增加铣削工序。如美国Sanders 公司的"3D-Plotting"技术,在每层成形后,铣削该层的上表面以控制Z向的尺寸。德国Fraunhofer 生产技术研究所的激光快速成形技术,在形成零件的单层后,用一个高速铣削头沿零件的轮廓光整一遍。这样,使得整个成形系统更加复杂,其价格高居不下。 用微孔喷射和挤出成形的技术,微孔易堵塞,工作可靠性有待改进。 某些采用垂直切割的工艺为了减小台阶效应,提高精度,不得不将每层的厚度尽量减小,这就限制了制造速度。 大多数工艺局限于某种或某几种材料,例如: SLS 限于石蜡、塑料、金属、陶瓷等粉末热塑性材料: SLA 限于热固性光敏树脂: LOM 限于纸、金属箔、塑料薄膜等薄层材料: FDM 限于蜡、热塑性树脂、低熔点金属等。
- 原理及特点 以上这些缺点阻碍了RP 的商业应用。因此,在今后的几年内,精度高、成本低、适用材料范围广的RP技术,将是该领域研究和发展的主流。 为此,我们开始了基于刀具切线切割轮廓的厚层叠层制造技术的研究。其原理是将零件的三维CAD模型分层,然后用数控铣床加工出各层,再将各层堆叠、粘结、装配成一体,经过适当的后处理(如热压、焙烧等)之后,最后形成的零件不仅具有精确的几何形状,还有良好的功能结构性(图1)。与一般的采用激光切割轮廓的叠层制造及其他快速原型制造技术相比,我们正在研究的基于刀具切线切割轮廓的厚层叠层制造技术,具有精度高、生产效率高、成本低、材料范围广等优点。具体如下:
图1 厚层叠层制造系统的工作过程
- 数控机床为了提高精度,我们采用变厚分层、刀具切线切割,因此,所用的数控铣床需要五坐标联动。五个坐标分别是:X、Y、Z、A(绕X轴的旋转)、B(绕Y轴的旋转)。为了降低费用,我们对一台旧的三坐标钻铣床进行了改造:在X、Y工作台上加两个转台(图3),构成A、B两个坐标。在小转台上安装切割工作台。X、Y、Z、A、B五轴均加装步进电动机,其运动由计算机数控系统控制。
1.Y向步进电动机 2.X向步进电动机 3.支板 4.Z向步进电动机 5.小转台 6.大转台 7.U型连接板 8.大转台支板 9.底板 10.切割工作台
图3 五坐标数控铣床示意图
1.切割工作台 2.垫板 3.已加工工件单层 4.螺栓
图4 装夹方案示意图