维修电路一些基础性知识
详细内容
三端稳压器,这是最常见的稳压器,用法极其简单,输入输出均有一个聚酯电容和电解电容作为滤波使用,电容的规格型号完全一样。
最常见的就是78系列(正电压)和79系列(负电压),这些型号从5v-24v都有,电流都是1.5A,78(79)H系列电流为5A,78(79)L系列电流是0.5A。
三端稳压器一般用在恒压电路中,电流随负载变化而变化,除L系列,其余都有散热片,要注意的是散热片并不都是接地的,78系列是散热片接地,但79系列是输出接地,因此,在设备上经常看到此类需要散热片的芯片与稳压器或者大功率三极管接触的地方都有类似塑料的东西隔离,这个隔离膜有两个作用,一个是保证散热面积接触良好提高散热效率,另一个就是避免与地线短路。维修过程中不慎将隔离膜去掉或者丢失,就会造成短路,而无法开机。紧固螺栓有时候也要与芯片或者管子上的散热片金属部分隔离,否则也会短路。
三端稳压器可靠性很高,很少损坏,遇到炸开等损坏一般也都是后极电路严重短路造成的。
这里引出几个我们初中学过的物理课程,在这个时候我们学习了几个电路公式
U=IR,U是电压,I是电流,R是电阻,如何应用这个公式呢,我们举例来说。一台设备通电就烧掉保险,有时候会烧掉电源上的保险,经常有人问是电源问题还是后面的线路板问题?很简单,拔下电源到后面板的插头,电源单独通电,测量电源输出看是否有正常的电压,如果电压正常,还不能断定电源就是好的,还要测量一下后面的板子,后面的板子对应的插头电阻是多少要测量一下,这样电压知道了,电阻也知道了就可以通过计算得到答案。例如,电源电压是5v,7805的三端稳压,那么我们就知道其电流最大也就是1.5A,R=U/I=3.33欧姆,这个电阻值就是正常的范围底线,如果你测量出后面的板子电阻有200欧姆那么后面的板子肯定没有问题,实际上没有人设计电路会把电源用到饱和的,一般设计成电源功率的一半甚至更低,目的就是保护电源,延长寿命,降低发热程度。上面的这个例子一般测量到的电阻都是几十欧姆甚至上百欧姆的。供电电压越高其连接板的电阻也就越高。后续板子电阻正常出现通电烧毁保险的问题,一般是电源本身的故障造成的,稳压效果变差,器件老化损坏等等都有可能。
有些电源仅提供功率和电压,那么功率的公式可以推导出很多,P(功率)=UI=U2/R=I2R,通过公式的套用就可以计算出是否正常。 一般维修当中很少测量电流的,原因有两个,一是电流测量要将万用表串接到电路中,需要断开原来的线路,比较麻烦,二是电源都有过流保护,出现电流过大电源首先会保护无法测量。
三端稳压器不接散热器发热烫手是正常的,但不接散热器的情况下不能工作长时间,否则容易损坏,在接上散热器的情况下发热严重往往预示着电流过大,后续电路有问题。还有的稳压器不是三端的,而是集成电路样子的封装,就是DIP封装的,8脚甚至更多,这些电源电路一般用于可调电源和恒流电路中,例如LM215,LM317.
这里要说明的是,恒流电路的作用,很多地方需要恒流电路,例如需要稳定光源的地方,无论是灯泡还是LED.恒流的作用可以使用电器件特别是光源不闪烁,输出稳定的光亮度。值得一提的是恒流电路非常稳定,很少会损坏。说一下什么是电平,电平信号运用到数字电路当中,区别于模拟电路的信号,有TTL电平和cmos电平之分。
什么是TTL电平呢,输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。这是TTL电平的概念。
CMOS电平是1逻辑电平电压接近于电源电压即高电平,0逻辑电平接近于0V即低电平。而且具有很宽的噪声容限。下面是有关电平的知识。
1、电平转换电路:
因为TTL和S的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。哈哈
2、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外接上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。 这也就是在数字电路中经常会见到电阻,而且会见到电阻排,只是就是为了上拉或者限流用的。
3,TTL和S电路比较:
1)TTL电路是电流控制器件,而s电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。S电路的速度慢,传输延迟时间长(25-50ns),但功耗低。S电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
3)S电路的锁定效应:
S电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。这种效应就是锁定效应。当产生锁定效应时,S的内部电流能达到40mA以上,很容易烧毁芯片。
防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启S电路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭S电路的电源。
4,S电路的使用注意事项
1)S电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。
2)输入端接低内组的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。
3)当接长信号传输线时,在S电路端接匹配电阻。
4)当输入端接大电容时,应该在输入端和电容间接保护电阻。电阻值为R=V0/1mA.V0是外界电容上的电压。
5)S的输入电流超过1mA,就有可能烧坏S。
5,TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):
1)悬空时相当于输入端接高电平。因为这时可以看作是输入端接一个无穷大的电阻。
2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。这个一定要注意。S门电路就不用考虑这些了。
6,TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三机管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。而这个就是漏电流。开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。它可以吸收很大的电流,但是不能向外输出的电流。所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。
接下来就是阐述一下集成电路了。
一、数字集成电路的分类
数字集成电路有多种分类方法,以下是几种常用的分类方法。
1.按结构工艺分
按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。
世界上生产最多、使用最多的为半导体集成电路。半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。
ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。双极型集成电路主要有TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。其中TTL电路的性能价格比最佳,故应用最广泛。
ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。它是利用运放原理通过晶体管射极耦合实现的门电路。在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。这种门电路输出阻抗低,负载能力强。它的主要缺点是抗干扰能力差,电路功耗大。
MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。 MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(plement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。
MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。CMOS数字集成电路电路主要分为4000(4500系列)系列、54HC/74HC系列、54HCT/74HCT系列等,实际上这三大系列之间的引脚功能、排列顺序是相同的,只是某些参数不同而已。例如,74HC4017与CD4017为功能相同、引脚排列相同的电路,前者的工作速度高,工作电源电压低。4000系列中目前最常用的是B系列,它采用了硅栅工艺和双缓冲输出结构。2.根据集成电路规模的大小分
根据集成电路规模的大小,数字集成电路通常分为小规模集成电路(SSI) 、中规模集成电路(MSI) 、大规模集成电路(LSI)和超大规模集成电路(VLSI)。
(1) 小规模集成电路(Small Scale Integration,SSI)
小规模集成电路通常指含逻辑门个数小于10 门(或含元件数小于100个)的电路。
(2) 中规模集成电路(Medium Scale Integration,MSI)
中规模集成电路通常指含逻辑门数为10门~99门(或含元件数100个~999个)的电路。
(3) 大规模集成电路(Large Scale Integration,LSI)
大规模集成电路通常指含逻辑门数为1000门~9999门(或含元件数1000个~99999个)的电路。
(4) 超大规模集成电路(Very Large Scale Integration,VLSI)
超大规模集成电路通常指含逻辑门数大于10000 门(或含元件数大于100000个)的电路。
3. 根据电路的功能分
(1)门电路与门/与非门、或门/或非门、非门等。
(2) 触发器 锁存器R-S触发器、D触发器、J-K触发器等
(3) 编码器 译码器二进制——十进制译码器、BCD—7段译码器等。
(4)计数器二进制、十进制、N进制计数器等。
(5)运算电路加/减运算电路、奇偶校验发生器、幅值比较器等。
(6) 时基 定时电路单稳态电路 、延时电路等。
(7) 模拟电子开关 数据选择器
(8) 寄存器基本寄存器、移位寄存器(单向、双向)。
(9) 存储器RAM、ROM、E2PROM、Flash ROM等。
(10) CPU
对广大电子爱好者来说,最需要了解和掌握的为第1~8类中小规模集成电路的原理与应用,因此,本书按照该分类对第1~8类中常用的数字集成电路的基本工作原理及应用作比较详细地介绍。下面先介绍TTL 74系列和4000系列数字集成电路的型号组成及符号的意义。
二、 数字集成电路的命名
1.数字集成电路型号的组成及符号的意义
数字集成电路的型号组成一般由前缀、编号、后缀三大部分组成,前缀代表制造厂商,编号包括产品系列号、器件系列号,后缀一般表示温度等级、封装形式等。如表0—1所示为TTL 74系列数字集成电路型号的组成及符号的意义。
1. TTL 74系列数字集成电路型号的组成及符号的意义
表0—1TTL74系列数字集成电路型号的组成及符号的意义
第1部分
第2部分
第3部分
第4部分
第5部分
前缀
产品系列
器件类型
器件功能
器件封装形式、温度范围
符号
意义
符号
意义
符号
意义
符号
意义
54
军用电路
-55-+125oC
标准电路
阿拉伯数字
器
件
功
能
W
陶瓷扁平
H
高速电路
B
塑封扁平
代表制造厂商
S
肖特基电路
F
全密封扁平
74
民用
通用电路
LS
低功耗肖特基电路
D
陶瓷双列直插
ALS
先进低功耗肖特基电路
P
塑封双列直插
AS
先进肖特基电路
2. 4000系列集成电路的组成及符号意义
4000系列CMOS器件型号的组成及符号的意义见表0—2。
表0—24000系列CMOS器件型号的组成及符号意义
第1部分
第2部分
第3部分
第4部分
型 号 前 缀的意 义
器 件 系 列
器 件 种 类
工作温度范围、封装形式
代表制造厂商
符 号
意 义
符 号
意 义
符号
意 义
CD
美国无线电公司产品
40
45
产品
系列号
阿
拉
伯
数
字
器
件
功
能
C
0℃~70&#61488;℃
中国制造
E
-40℃~85℃
TC
日本东芝公司产品
R
-55℃~85℃
MC1
摩托罗拉公司产品
M
-55℃~125℃
举例说明如下:
CT74LS00 P
(1)(2) (3) (4)(5)
封装形式P:塑料双列直插封装
器件种类:四2输入与非门
器件系列:低功耗肖特基74TTL电路系列
产品系列74系列
制造厂商CT:国产TTL电路
CT74LS00P为国产的(采用塑料双列直插封装)TTL 四2输入与非门。
SN 74 S195 J
(1)(2)(3) (4)(5)
封装形式J:陶瓷双列直插封装
器件种类:4位并行移位寄存器
器件系列:肖特基74TTL电路系列
产品系列74系列
制造厂商SN:美国TEXAS公司制造
SN74S195J为美国TEXAS公司制造的采用陶瓷双列直插封装的4位并行移位寄存器。
同一型号的集成电路原理相同,通常又冠以不同的前缀、后缀,前缀代表制造商(有部分型号省略了前缀),后缀代表器件工作温度范围或封装形式,由于制造厂商繁多,加之同一型号又分为不同的等级,因此,同一功能、型号的IC其名称的书写形式多样,如CMOS 双D触发器4013有以下型号:
CD4013AD CD4013AE CD4013CJ CD4013 CD4013BD CD4013BE CD4013BF CD4013UBD CD4013UBE CD4013BCJ CD4013B;
HFC4013 HFC4013BE HCF4013BF H4013BD/BF/BK HEF4013BD/BP HBC4013AD/AE/AK/AF SCL4013AD/AE/AC/AF MB84013/M MC14013CP/BCP TC4013BP.
一般情况下,这些型号之间可以彼此互换使用。
下面用实例讲述如何查询电路资料,如何通过资料判断此类电路的好坏。
我们经常见到74HC或者74HCT132---四双输入双稳态(施密特)触发器,当我们在电路当中遇到这个电路有可能出现问题的时候,首9先要查找这个电路的资料,否则你无从下手,最起码要知道的是管脚定义,那么如何去查找呢?现在网络的发达解决了这个难题。上网在google或者百度等搜索引擎上输入这个芯片的全部型号,就会找到很多关于这个芯片的资料,但在搜索引擎上很难一下子找到芯片资料也就是我们常说的DATASHEET,因为搜索引擎是商业行为,往往商业广告占据前几页,网站上也有很多专门提供DATASHEET的网站,大家有兴趣可以到://.alldatasheet. 上直接输入你的芯片型号,除了特殊芯片,常用的我们都能在这里找到。找到这个型号的DATASHEET就可以下载下来察看了,这里要说明的有两点,第一,这些资料都是英文的,绝少有中文的,很多人跟我说看不懂没法修,我就说那也只好不修了,没办法的事情,科技的发展不会因为你看不懂而停滞的。第二这些资料都是PDF格式的,需要专门的阅读器,我这里就不多说了。
我们下载下来打开看之后,就会发现,这个芯片的说明都在里面,这个型号的全称叫什么,做什么用的都在里面,但这些对我们维修来说用处不大。我们关心的有下面几张图:这张图是说明芯片的引脚定义,也给出了内部结构框图。从这里面我们看出,这是4路的触发器,是两路输入的双稳态触发器,也就是说这一个芯片有4组功能作用完全相同的独立的触发器组成的,这就跟我们一个提示,今后经常遇到这类的电路,有时候这些电路并没有完全用完,那么在一路出现问题的情况下,我们可以通过线路的切换来利用未使用的部分从而达到紧急修复的目的。这类电路通常不会同时损坏的。那么如何判别这些电路的好坏呢,我们就需要下面一张表(略)
这是这个芯片的功能表,这张表给出了每一路中两个输入端(A和B)还有输出端(Y)的逻辑关系,当A和B都为高电平时输出端才为低电平,否则其余的任何一种状态输出地都为低电平。那么我们就根据这个关系来判断好坏。
这个时候我们就需要用到逻辑笔或者万用表,在这个方面逻辑笔的方便程度要高于万用表,不过,没有逻辑表也没有必要非去买,万用表也可以的。由于这样的电路不会同时损坏,那么我们首先测量4个输出的电压是否都是一致的电平,如果都是高或者都是低就要检查4路8个输入都是否一样,注意,要A路比较A路,B路比较B路。同时损坏的可能基本上不大。4路输出不一致按照少数服从多数的原则进行查找。例如查出1Y的电平为高,其余的输出都是低,从逻辑关系上我们看出,输出低电平意味着输入都是高,我们就来检查1A1B的输入电平,如果输入也都是高但输出是低,那么不用怀疑了,这一路换掉了,更换这个芯片即可。如果输入有高有低那么输出肯定是高的,但这不能断定这个芯片就是好的,还要继续判断,例如,1A 输入是高1B输入是低,输出1Y是高,怎么进行下一步判断呢,首先将1B端的引线切断,将1A1B短路,这样就都是高电平了,这个时候再测量1Y输出,如果1Y的输出是低,那么这个芯片没有问题,重点查找上一级芯片给出的信号,如果1Y输出还是高同时测量1A也变成了低,那么意味着1B输入端损坏,也需要更换了。但也有大多数损坏就一路好的情况,呵呵,少见的。还有就是电路内部电源出现问题造成的整体损坏,具体的判断也是依据这个逻辑关系。说的挺复杂看着也很累,其实知道原理,检测的时候也就是几秒钟的事情。
前面讲述了单纯的逻辑关系电路,那么挂接在总线的芯片如何检查呢?我们下面的这个例子就是
74HC573,八进制3态非反转锁存器(这么一大堆原文直译,其实就是8位锁存器),在电路板上排查到这个芯片,我们就需要知道它的DATASHEET,同样经过下载后得到管脚图和逻辑关系表:(略)
这是引脚图,我们发现跟前面不同的是多了一个LE一个OE,LE表示锁存,上面没有横线表示高电平有效,OE上面一个横线表示片选,在电路中所有标注上有横线的端口都是低电平有效,Dn即D0---D7表示8条数据线的编号,Q0--Q7表示8条输出。
从这个内部结构框图我们看出,由于LE和OE的存在,使得输入和输出没有直接的逻辑关系,D0---D7挂接在数据总线上,(A0--表示地址总线,以后可能会提到),输入输出的逻辑关系完全依赖LE和OE的状态,那么我们就需要找到下一张逻辑关系表:
这个表中罗列了复杂的逻辑关系。这这个状态中最下面一行是LE和OE都无效的状态,那么无论数据总线是高还是低,输出都是高阻抗的关闭状态也就是说用逻辑笔测量不出电平信号,红色的高电平灯和绿色的低电平灯都不亮,万用表测量出来是2.5v左右的一个莫名其妙的电压,我个人习惯把它叫做悬空,当初进行理论学习的时候这个状态术语怎么说我没听估计是开小差了,讲这部分课程的时候正好是金秋时节,海边的螃蟹正肥着的时候,估计想它们去了。第一行是LE和OE都有效的情况下,这个时候输入和输出的信号逻辑关系是一致的,输入高输出也是高,输入低输出也是低。在第二行描述了片选OE有效但锁存无效的情况下输入输入的关系,这个时候的输入信号变成的小写的l和h,这是表示LE信号在由高变低的时候发出的高低电平信号,这个信号万用表很难测量到,逻辑笔也是红绿灯的瞬间闪烁,示波器倒是可以捕捉到,但意义不大。
可能有人会问,为什么没有第四行,也就是说片选OE无效锁存LE有效的情况的呢,前几天给朋友们上课的时候有人问过,其实这是一个总线的问题,很多芯片都挂接在总线上也就是BUS,那么如何选择一个芯片是否接受指令并工作呢,你总不能让挂接在总线上的所有芯片都工作吧,那样会引起逻辑混乱,用一个通俗的说法,总线就是公交线路,片选就是站点,公交车到站就要停车上下乘客,片选就是这个站点只是,由cpu根据程序发出的指令,让某一个芯片进入工作状态,如果这个工作状态无效,也就说明这个芯片不处于工作状态,所以也就没有必要罗列出一个不工作状态的逻辑关系了,因为它就没有什么关系存在。
这样的芯片从输出端测量比较好,输入端由于挂接在总线上,万用表的表笔干扰会扰乱总线信号,因此不容易测量,逻辑笔倒是很好的测量手段。所以,这类的逻辑关系比较复杂,需要清晰的头脑进行检测。
判断这类电路好坏的参照标准就是这个逻辑关系表,注意的是,出现信号与逻辑关系不符的情况一定先断开线路本身进行附加信号加以验证,例如8条输出除了Q1以外都是高,OE和LE都有效,输入也都是高,那么先切断Q1与其他电路的引线再测量,如果还是低才能断定这个芯片损坏,否则就是后级电路有问题。那么输入端的检查也是如此,不要根据一个信号的错误不加验证就断定一个芯片的好坏,我本人就亲眼见到很多人这么处理,结果一块板子从后到前更换了一大堆芯片,总后的原因是CPU这个引脚本身就没有接触好,或者程序判断出其他的问题导致这个引脚的输出不对,忙活了半天还没有真正的解决问题,因此在线路板上适当的切线排查是严谨的做法。模拟电路要转换成数字电路就要用到A/D转换器,数字电路转换成模拟电路就要用到D/A转换器,
D/A转换器是数模转换器,在数码音响产品中负责将数字音频信号转换为模拟信号的装置。传统的声音属于模拟信号,而计算机和光盘中记录的声音是数字信号,因此录制光盘需要将模拟信号转换为数字信号,而播放光盘时需要将数字信号转换为模拟信号再通过音响播放,这个过程就需要数模转换器。
将模拟信号转换为数字信号,这个编码过程最重要的两个参数就是取样频率和取样深度,它们决定了编码的精度。取样频率就是模拟信号转数字信号时每秒对声波取样的次数,显然取样频率越高,越接近原始的模拟信号。取样深度决定了每次取样对声音强度记录的精细程度,24位取样深度表示对声音强弱分为2的24次方个等级,显然这个数值越大,对声音强度变化记录的越准确。这两个参数很大意义上决定着数码音效的质量,数字越大,音质越好。举个例子,CD的取样率为44.1KHz,取样深度为16Bit;DVD的取样率为48KHz,取样深度为20Bit;DVD-Audio的取样率为96KHz,取样深度为24Bit。播放光盘中的声音的过程相反,是将已有的数字信号转换为模拟信号,显然只有当家庭影院本身具有足够高的D/A转换器情况下,才能把高精度的数字信号转换为出色的模拟信号。
此外对于家庭影院来说,视频信号也是以数字信号方式保存,因此对视频信号也有类似的情况,也就是说同样需要D/A转换器,只不过相比而言D/A转换器对声音信号更为重要。明白了D/A转换器的作用后也不能迷信D/A转换的数值, D/A转换精度并不是唯一决定声音质量的因素,声音信号最重要的是给人的感受,高质量的CD音频并不比DVD音频给人的感受逊色。
A/D与D/A转换器及接口
微型计算机往往要与模拟量信息打交道,此时,外界的模拟信息要通过A/D(Analog To Digit)转换器成数字信息,才能输入微机进行各种处理;而微机中要输出的各种数字信息必须通过D/A(Digit To Analog)转换器才能转换成模拟信息。下面介绍A/D、D/A转换器及其与微机接口的基本方法。
7.7.1 D/A转换器入接口
D/A转换器是把数字量转换成模拟量的线性电路器件,已做成集成芯片。由于实现D/A转换的原理、电路结构及工艺技术有所不同,因而出现了各种各样的D/A转换器。D/A转换器为微机系统的数字信号与外部环境的模拟信号之间提供了一种接口,从而广泛地应用在数据采集与模拟输入/输出系统。
1.D/A转换器的特性
(1)D/A转换器的主要参数
衡量一个D/A转换器性能的主要参数有:
①分辨率
指D/A能够转换的二同数的位数,位数越多,分辨率也越高,例如,一个D/A转换器能够转换8位二进制数,若转换后的电压满量程(满度)是5V,则它能分辨的最小电压为5V/256=20mV。
如果是10位分辨率的D/A转换器,对同样的转换电压,则它能分辨的最小电压为5V/1024=5mV。
②转换时间
指数字量输入到完成D/A转换,输出达到最终值并稳定为止所需的时间。电流型D/A转换器转换较快,一般在几微秒至几百微秒之间。电压型转换器的转换较慢,取决于运算放大器的响应时间。
③精度
指D/A转换器输出电压与理论值之间的误差。一般采用数字量的最低有效位作为衡量单位,例如±1/2LSB。如果分辨率为8位,则它的精度是:±(1/2)(1/256)=±1/512。
④线性度
当数字量变化时,D/A转换器的输出量按比例关系变化的程度。理想的D/A转换器是线性的,但实际上有误差,模拟输出偏离理想输出的最大值称为线性误差。
(2)D/A转换器的输入/输出特性
表示一个D/A转换器的输入/输出特性的几个方面为:
①输入缓冲能力
D/A转换器是否带有三态输入缓冲器来保存输入数字量,这对D/A转换器与微机的接口设计是很重要的。
②输入数据的宽度
D/A转换器通常有8位、10位、12位、14位、16位之分。当D/A转换器的位数高于微机系统总线的宽度时,需用2次分别输入数字量。
③电流型还是电压型
即D/A转换器输出的是电流还是电压。对电流输出型,在几毫安到几十毫安;对电压输出型,其电压一般在5V~10V之间。有些高电压型可达24V~30V。
④输入码制
即D/A转换器能接收哪些码制的数字量输入。一般对单极性输出的D/A转换器只能接收二进制或BCD码,对双极性输出的D/A转换器只能接收偏移二进制码或补码。
⑤是单极性输出还是双极性输出
对一些需要正负电压控制的设备,应该使用双极性D/A转换器,或在输出电路中采取相应措施,使输出电压有极性变化。